hkr.sePublications
Change search
Refine search result
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Airey, John
    et al.
    Uppsala Universitet.
    Eriksson, Urban
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    A semiotic analysis of the disciplinary affordances of the Hertzsprung-Russell diagram in astronomy2014Conference paper (Refereed)
    Abstract [en]

    One of the central characteristics of disciplines is that they create their own particular ways of knowing the world. This process is facilitated by the specialization and refinement of disciplinary-specific semiotic resources over time. Nowhere is this truer than in the sciences, where it is the norm that disciplinary-specific representations have been introduced and then refined by a number of different actors. As a consequence, many of the semiotic resources used in the sciences today still retain some traces of their historical roots.

    In this paper we analyse one such disciplinary-specific semiotic resource from the field of Astronomy—the Hertzsprung-Russell diagram. We audit the potential of this semiotic resource to provide access to disciplinary knowledge—what Fredlund et al (2012) have termed its disciplinary affordances. Our analysis includes consideration of the use of scales, labels, symbols, sizes and colour. We show how, for historical reasons, the use of these aspects in the resource may differ from what might be expected by a newcomer to the discipline.

    We suggest that some of the issues we highlight in our analysis may, in fact, be contributors to alternative conceptions and therefore propose that lecturers pay particular attention to the disambiguation of these features for their students.

  • 2.
    Airey, John
    et al.
    Uppsala universitet.
    Eriksson, Urban
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    What do you see here?: using an analysis of the Hertzsprung-Russell diagram in astronomy to create a survey of disciplinary discernment2014In: Book of abstracts: The First Conference of the International Association for Cognitive Semiotics(IACS-2014), September 25-27, 2014 Lund University, 2014, p. 52-53Conference paper (Refereed)
    Abstract [en]

    Becoming part of a discipline involves learning to interpret and use a range of disciplinary-specific semiotic resources (Airey, 2009). These resources have been developed and assigned particular specialist meanings over time. Nowhere is this truer than in the sciences, where it is the norm that disciplinary-specific representations have been introduced and then refined by a number of different actors in order to reconcile them with subsequent empirical and theoretical advances. As a consequence, many of the semiotic resources used in the sciences today still retain some (potentially confusing) traces of their historical roots. However, it has been repeatedly shown that university lecturers underestimate the challenges such disciplinary specific semiotic resources may present to undergraduates (Northedge, 2002; Tobias, 1986).

    In this paper we analyse one such disciplinary-specific semiotic resource from the field of Astronomy—the Hertzsprung-Russell diagram. First, we audit the potential of this semiotic resource to provide access to disciplinary knowledge—what Fredlund et al (2012) have termed its disciplinary affordances. Our analysis includes consideration of the use of scales, labels, symbols, sizes and colour. We show how, for historical reasons, the use of these aspects in the resource may differ from what might be expected by a newcomer to the discipline. Using the results of our analysis we then created an online questionnaire to probe what is discerned (Eriksson, Linder, Airey, & Redfors, in press) with respect to each of these aspects by astronomers and physicists ranging from first year undergraduates to university professors.

    Our findings suggest that some of the issues we highlight in our analysis may, in fact, be contributors to the alternative conceptions of undergraduate students and we therefore propose that lecturers pay particular attention to the disambiguation of these features for their students.

  • 3.
    Airey, John
    et al.
    Uppsala universitet.
    Eriksson, Urban
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Fredlund, Tobias
    Uppsala universitet.
    Linder, Cedric
    Uppsala universitet.
    On the disciplinary affordances of semiotic resources2014In: Book of abstracts: The First Conference of the International Association for Cognitive Semiotics(IACS-2014), September 25-27, 2014 Lund University, 2014, p. 54-55Conference paper (Refereed)
    Abstract [en]

    In the late 70’s Gibson (1979) introduced the concept of affordance. Initially framed around the needs of an organism in its environment, over the years the term has been appropriated and debated at length by a number of researchers in various fields. Most famous, perhaps is the disagreement between Gibson and Norman (1988) about whether affordances are inherent properties of objects or are only present when they are perceived by an organism. More recently, affordance has been drawn on in the educational arena, particularly with respect to multimodality (see Linder (2013) for a recent example). Here, Kress et al. (2001) have claimed that different modes have different specialized affordances. Then, building on this idea, Airey and Linder (2009) suggested that there is a critical constellation of modes that students need to achieve fluency in before they can experience a concept in an appropriate disciplinary manner. Later, Airey (2009) nuanced this claim, shifting the focus from the modes themselves to a critical constellation of semiotic resources, thus acknowledging that different semiotic resources within a mode often have different affordances (e.g. two or more diagrams may form the critical constellation).

    In this theoretical paper the concept of disciplinary affordance (Fredlund et al., 2012) is suggested as a useful analytical tool for use in education. The concept makes a radical break with the views of both Gibson and Norman in that rather than focusing on the discernment of one individual, it refers to the disciplinary community as a whole. Put simply, the disciplinary affordances of a given semiotic resource are determined by those functions that the resource is expected to fulfil by the disciplinary community. Disciplinary affordances have thus been negotiated and developed within the discipline over time. As such, the question of whether these affordances are inherent or discerned becomes moot. Rather, from an educational perspective the issue is whether the meaning that a semiotic resource affords to an individual matches the disciplinary affordance assigned by the community. The power of the term for educational work is that learning can now be framed as coming to discern the disciplinary affordances of semiotic resources.

    In this paper we will briefly discuss the history of the term affordance, define the term disciplinary affordance and illustrate its usefulness in a number of educational settings.

  • 4.
    Airey, John
    et al.
    Uppsala Universitet.
    Eriksson, Urban
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Fredlund, Tobias
    Uppsala universitet.
    Linder, Cedric
    Uppsala universitet.
    The concept of disciplinary affordance2014Conference paper (Refereed)
    Abstract [en]

    Since its introduction by Gibson (1979) the concept of affordance has been discussed at length by a number of researchers. Most famous, perhaps is the disagreement between Gibson and Norman (1988) about whether affordances are inherent properties of objects or are only present when perceived by an organism. More recently, affordance has been drawn on in the educational arena, particularly with respect to multimodality (see Linder (2013) for a recent example). Here, Kress et al (2001) claim that different modes have different specialized affordances.

     

    In this theoretical paper the concept of disciplinary affordance (Fredlund et al., 2012) is suggested as a useful analytical educational tool. The concept makes a radical break with the views of both Gibson and Norman in that rather than focusing on the perception of an individual, it refers to the disciplinary community as a whole. Put simply, the disciplinary affordances of a given semiotic resource are determined by the functions that it is expected to fulfil for the discipline. As such, the question of whether these affordances are inherent or perceived becomes moot. Rather, the issue is whether what a semiotic resource affords to an individual matches the disciplinary affordance. The power of the term is that learning can now be framed as coming to perceive the disciplinary affordances of semiotic resources.

     

    In this paper we will briefly discuss the history of the term affordance, define the term disciplinary affordance and illustrate its usefulness in a number of educational settings

  • 5.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Astronomi på distans: 2011In: Populär Astronomi, ISSN 1650-7177, Vol. 12, no 3, p. 38-40Article in journal (Other (popular science, discussion, etc.))
    Abstract [sv]

    Dagens studenter är mycket mer flexibla i sina studier än tidigare. Idag läser många studenter kurser på olika universitet och högskolor samtidigt. Detta är möjligt genom att många kurser ges på distans via internet. I denna artikel kommer jag att berätta lite om de erfarenheter som jag har efter att ha undervisat ca 10 år på distans.

  • 6.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    En astronomisk reflektion över bin och honungsproduktion.2006In: Bitidningen, ISSN 0006-3886Article in journal (Other (popular science, discussion, etc.))
  • 7.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Reading the sky and the spiral of teaching and learning in astronomy2015Conference paper (Refereed)
    Abstract [en]

    Teaching and learning astronomy is known to be both exciting and challenging. To learn astronomy demands not only disciplinary knowledge, but also ability to discern affordances from disciplinary specific representations used within the discourse, which we call disciplinary discernment, and ability to think spatially, which we refer to as extrapolating three-dimensionality from a two dimensional input. Disciplinary knowledge involves all the knowledge that constitutes the discipline, disciplinary discernment involves discernment of the affordances of disciplinaryspecific representations, and extrapolating three-dimensionality involves the ability to visualize in ones mind how a three-dimensional astronomical object may look from a two-dimensional input (image or simulation). In this paper we argue that these abilities are intertwined and to learn astronomy at any level demands becoming fluent in all three. A framework is presented for how these abilities can be described and combined as a new and innovative way to frame teaching and learning in astronomy for optimizing the learning outcome of students - what we refer to as developing the ability to Read the Sky. We conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this to improve astronomy education.

  • 8.
    Eriksson, Urban
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Reading the sky: from starspots to spotting stars2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis encompasses two research fields in astronomy: astrometry and astronomy education and they are discussed in two parts. These parts represent two sides of a coin; astrometry, which is about constructing 3D representations of the Universe, and AER, where for this thesis, the goal is to investigate university students’ and lecturers’ disciplinary discernment vis-à-vis the structure of the Universe and extrapolating three-dimensionality.

    Part I presents an investigation of stellar surface structures influence on ultra-high-precision astrometry. The expected effects in different regions of the HR-diagram were quantified. I also investigated the astrometric effect of exoplanets, since astrometric detection will become possible with projects such as Gaia. Stellar surface structures produce small brightness variations, influencing integrated properties such as the total flux, radial velocity and photocenter position. These properties were modelled and statistical relations between the variations of the different properties were derived. From the models it is clear that for most stellar types the astrometric jitter due to stellar surface structures is expected to be of order 10 μAU or greater. This is more than the astrometric displacement typically caused by an Earth-sized exoplanet in the habitable zone, which is about 1–4 μAU, making astrometric detection difficult.

    Part II presents an investigation of disciplinary discernment at the university level. Astronomy education is a particularly challenging experience for students because discernment of the ‘real’ Universe is problematic, making interpretation of the many disciplinary-specific representations used an important educational issue. The ability to ‘fluently’ discern the disciplinary affordances of these representations becomes crucial for the effective learning of astronomy. To understand the Universe I conclude that specific experiences are called. Simulations could offer these experiences, where parallax motion is a crucial component. In a qualitative study, I have analysed students’ and lecturers’ discernment while watching a simulation video, and found hierarchies that characterize the discernment in terms of three-dimensionality extrapolation and an Anatomy of Disciplinary Discernment. I combined these to define a new construct: Reading the Sky. I conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this in astronomy education.

  • 9.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Teaching and learning in astronomy education – a spiral approach to reading the sky2015Conference paper (Refereed)
    Abstract [en]

    Teaching and learning astronomy is known to be both exciting and challenging. However, learning astronomy at university level is a demanding task for many students. The learning pro-cess involves not only disciplinary knowledge, but also the ability to discern affordances from disciplinary specific representations used within the astronomy discourse, which we call discipli-nary discernment (Eriksson, Linder, Airey, & Redfors, 2014a) and ability to think spatially, which we refer to as extrapolating three-dimensionality from a two dimensional input (Eriksson, Linder, Airey, & Redfors, 2014b). Disciplinary knowledge involves all the knowledge that con-stitutes the discipline, disciplinary discernment involves discernment of the affordances of disci-plinary-specific representations, and extrapolating three-dimensionality involves the ability to visualize in ones mind how a three-dimensional astronomical object may look from a two-dimensional input (image or simulation). In this paper we argue that these abilities are inter-twined and to learn astronomy at any level demands becoming fluent in all three abilities. A framework is presented for how these abilities can be described and combined as a new and in-novative way to frame teaching and learning in astronomy at university level for optimizing the learning outcome of students - what we refer to as developing the ability of Reading the Sky (Eriksson, 2014). We conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this to improve astronomy education.

    References

    Eriksson, Urban. (2014). Reading the Sky - From Starspots to Spotting Stars. (Doctor of Philosophy), Uppsala University, Uppsala. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234636  

    Eriksson, Urban, Linder, Cedric, Airey, John, & Redfors, Andreas. (2014a). Introducing the Anatomy of Disciplinary Discernment - An example for Astronomy. European Journal of Science and Mathematics Education, 2(3), 167-182. 

    Eriksson, Urban, Linder, Cedric, Airey, John, & Redfors, Andreas. (2014b). Who needs 3D when the Universe is flat? Science Education, 98(3), 31. 

  • 10.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    The spiral of teaching and learning in astronomy education2015Conference paper (Refereed)
    Abstract [en]

    Teaching and learning astronomy is known to be both exciting and challenging. To learn astronomy demands not only disciplinary knowledge, but also ability to discern affordances from disciplinary specific representations used within the discourse, which we call disciplinary dis- cernment (Eriksson, Linder, Airey, & Redfors, 2014a) and ability to think spatially, which we refer to as extrapolating three-dimensionality from a two dimensional input (Eriksson, Linder, Airey, & Redfors, 2014b). Disciplinary knowledge involves all the knowledge that constitutes the discipline, disciplinary discernment involves discernment of the affordances of disciplinary- specific representations, and extrapolating three-dimensionality involves the ability to visualize in ones mind how a three-dimensional astronomical object may look from a two-dimensional input (image or simulation). In this paper we argue that these abilities are intertwined and to learn as- tronomy at any level demands becoming fluent in all three abilities. A framework is presented for how these abilities can be described and combined as a new and innovative way to frame teach- ing and learning in astronomy at university level for optimizing the learning outcome of students - what we refer to as developing the ability of Reading the Sky (Eriksson, 2014). We conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this to improve astronomy education.

  • 11.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    The Spiral of Teaching and Learning in Physics and Astronomy2016Conference paper (Refereed)
    Abstract [en]

    When students start to learn physics and astronomy, they immediately are confronted with a multitude of representations packed with disciplinary information. This information is embedded in these representations and the students need to learn to discern the relevant information. This is not straightforward, and requires a lot of teaching and practice before being mastered. It carries many similarities to learning a new language – the language of physics, astronomy, or other sciences. 

    However, it all starts with disciplinary discernment from those representations, something that has been shown to be challenging for students. Often the teacher who knows the representations and their appresented meaning—their disciplinary affordances—assumes that the students discern the same things in those representations as the teacher does. Research has shown that this is not the case and such assumptions leads to educational problems for the students and make learning physics or astronomy unnecessary difficult, or even inaccessible to the students. The students need be given the opportunity to develop their competency in discerning disciplinary-specific relevant aspects from representations; a competency referred to as Reading the Sky in an astronomy context, and described by the Anatomy of Disciplinary Discernment (Eriksson, 2014a; Eriksson et al., 2014b).

    Furthermore, physics and astronomy are subjects aiming to describe the real multidimensional world, hence involve a substantial amount of spatial thinking. The students need to learn to extrapolate three-dimensionality in their minds from two-dimensional representations, which have been shown to be challenging to students. Unfortunately, this competency is often taken for granted and rarely addressed in teaching (Eriksson et al., 2014c).

    In this talk we present a model in which we identify and describe the critical competencies needed to “read” disciplinary-specific representations; it concerns not only disciplinary discernment but also spatial thinking and disciplinary knowledge. These are combined into the Spiral of Teaching and Learning (STL), a new and powerful model for optimizing teaching and learning science (Eriksson, 2014a; Eriksson, 2015). We discuss consequences and possibilities when applying the STL model and give an example of how this model can be used in teaching and learning astronomy.

  • 12.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Undervisning på distans – framtiden för universitet och högskolor?: ett exempel från astronomiundervisning på Högskolan Kristianstad2016In: Högskolepedagogisk debatt, ISSN 2000-9216, no 1, p. 46-73Article in journal (Refereed)
    Abstract [sv]

    Dagens studenter är mycket mer flexibla i sina studier än tidigare. Idag läser många studenter kurser på olika universitet och högskolor samtidigt. Detta är möjligt genom att många kurser och program ges på distans via internet. I denna artikel diskuteras de möjligheter och begränsningar som jag anser finns med den undervisningsform som allt mer präglar undervisning vid universitet och högskolor, nationellt och internationellt; distansundervisning.

  • 13.
    Eriksson, Urban
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Lindegren, L.
    Lund Observatory, Lund University.
    Limits of ultra-high-precision optical astrometry: stellar surface structures2007In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 476, no 3, p. 1389-1400Article in journal (Refereed)
    Abstract [en]

    Aims. To investigate the astrometric effects of stellar surface structures as a practical limitation to ultra-high-precision astrometry (e.g. in the context of exoplanet searches) and to quantify the expected effects in different regions of the HR-diagram. Methods. Stellar surface structures (spots, plages, granulation, non-radial oscillations) are likely to produce fluctuations in the integrated flux and radial velocity of the star, as well as a variation of the observed photocentre, i.e. astrometric jitter. We use theoretical considerations supported by Monte Carlo simulations (using a starspot model) to derive statistical relations between the corresponding astrometric, photometric, and radial velocity effects. Based on these relations, the more easily observed photometric and radial velocity variations can be used to predict the expected size of the astrometric jitter. Also the third moment of the brightness distribution, interferometrically observable as closure phase, contains information about the astrometric jitter. Results. For most stellar types the astrometric jitter due to stellar surface structures is expected to be of the order of 10 micro-AU or greater. This is more than the astrometric displacement typically caused by an Earth-size exoplanet in the habitable zone, which is about 1-4 micro-AU for long-lived main-sequence stars. Only for stars with extremely low photometric variability (< 0.5 mmag) and low magnetic activity, comparable to that of the Sun, will the astrometric jitter be of the order of 1 micro-AU, sufficient to allow the astrometric detection of an Earth-sized planet in the habitable zone. While stellar surface structure may thus seriously impair the astrometric detection of small exoplanets, it has in general a negligible impact on the detection of large (Jupiter-size) planets and on the determination of stellar parallax and proper motion. From the starspot model we also conclude that the commonly used spot filling factor is not the most relevant parameter for quantifying the spottiness in terms of the resulting astrometric, photometric and radial velocity variations.

  • 14.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University.
    Watching the sky: new realizations, new meanings, and surprizing aspects in university level astronomy2011In: E-Book Proceedings of the ESERA 2011 Conference: Science learning and Citizenship. Part 3: Teaching and learning science / [ed] Catherine Bruguière, Andrée Tiberghien, Pierre Clément, Lyon, France: European Science Education Research Association , 2011, p. 57-63Conference paper (Refereed)
    Abstract [en]

    Learning astronomy is challenging at all levels due to the highly specialized form of communication used to share knowledge. When taking astronomy courses at different levels at university, learners are exposed to a variety of representations that are intended to help them learn about the structure and complexity of the Universe. However, not much is known about the reflective awareness that these representations evoke. Using a simulation video that provides a vivid virtual journey through our Milky Way galaxy, the nature of this awareness is captured and categorised for an array of learners (benchmark by results obtained for experts). The results illustrate how the number and nature of new things grounded in dimensionality, scale, time and perspective reflective awareness can too easily be taken for granted by both teachers and learners.

  • 15.
    Eriksson, Urban
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Introducing the anatomy of disciplinary discernment: an example from astronomy2014In: European Journal of Science and Mathematics Education, ISSN 2301-251X, E-ISSN 2301-251X, Vol. 2, no 3, p. 167-182Article in journal (Refereed)
    Abstract [en]

    Education is increasingly being framed by a competence mindset; the value of knowledge lies much more in competence performativity and innovation than in simply knowing. Reaching such competency in areas such as astronomy and physics has long been known to be challenging. The movement from everyday conceptions of the world around us to a disciplinary interpretation is fraught with pitfalls and problems. Thus, what underpins the characteristics of the disciplinary trajectory to competence becomes an important educational consideration. In this article we report on a study involving what students and lecturers discern from the same disciplinary semiotic resource. We use this to propose an Anatomy of Disciplinary Discernment (ADD), a hierarchy of what is focused on and how it is interpreted in an appropriate, disciplinary manner, as an overarching fundamental aspect of disciplinary learning. Students and lecturers in astronomy and physics were asked to describe what they could discern from a video simulation of travel through our Galaxy and beyond. In all, 137 people from nine countries participated. The descriptions were analysed using a hermeneutic interpretive study approach. The analysis resulted in the formulation of five qualitatively different categories of discernment; the ADD, reflecting a view of participants’ competence levels. The ADD reveals four increasing levels of disciplinary discernment: Identification, Explanation, Appreciation, and Evaluation. This facilitates the identification of a clear relationship between educational level and the level of disciplinary discernment. The analytical outcomes of the study suggest how teachers of science, after using the ADD to assess the students disciplinary knowledge, may attain new insights into how to create more effective learning environments by explicitly crafting their teaching to support the crossing of boundaries in the ADD model.  

  • 16.
    Eriksson, Urban
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University & Linnéuniversitetet.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Tell me what you see: differences in what is discerned when professors and students view the same disciplinary semiotic resource2014Conference paper (Refereed)
    Abstract [en]

    Traditionally, astronomy and physics have been viewed as difficult subjects to master. The movement from everyday conceptions of the world around us to a disciplinary interpretation is fraught with pitfalls and problems. What characterises a disciplinary insider’s discernment of phenomena in astronomy and how does it compare to the views of newcomers to the field? In this paper we report on a study into what students and professors discern (cf. Eriksson et al, in press) from the same disciplinary semiotic resource and use this to propose an Anatomy of Disciplinary Discernment (ADD) as an overarching characterization of disciplinary learning.

    Students and professors in astronomy and physics were asked to describe what they could discern from a simulation video of travel through our Galaxy and beyond (Tully, 2012). In all, 137 people from nine countries participated. The descriptions were analysed using a hermeneutic, constant comparison approach (Seebohm, 2004; Strauss, 1987). Analysis culminated in the formulation of five hierarchically arranged, qualitatively different categories of discernment. This ADD modelling of the data consists of one non-disciplinary category and four levels of disciplinary discernment: Identification, Explanation, Appreciation, and Evaluation. Our analysis demonstrates a clear relationship between educational level and the level of disciplinary discernment.

     

    The analytic outcomes of the study suggest that teachers may create more effective learning environments by explicitly crafting their teaching to support the discernment of various aspects of disciplinary semiotic resources in order to facilitate the crossing of boundaries in the ADD model.

  • 17.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Linder, Cedric
    Uppsala universitet.
    Airey, John
    Uppsala universitet.
    Redfors, Andreas
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    The overlooked challenge of learning to extrapolate three-dimensionality2013Conference paper (Refereed)
    Abstract [en]

    Learning astronomy has many learning challenges due to the highly diverse, conceptual, and theoretical thinking used in the discipline. One taken for granted challenge is the learning to 

    extrapolate three-dimensionality. Although we have the ability to see our surroundings in three- dimensional terms, beyond a distance of about 200m this ability quickly becomes very limited. So, when looking up at the night sky, learning to discern critical features that are embedded in dimensionality does not come easily. There have been several articles addressing how fruitful 3D simulations are for astronomy education, but they do not address what students discern, nor the nature of that discernment. Taking the concept of discernment to be about noticing something and assigning meaning to it, our research question is: In terms of dimensionality, what do astronomy/physics students and professors discern when engaging with a simulated video fly- through of our Galaxy and beyond?

    A web-based questionnaire was designed using links to video clips drawn from a well-regarded simulation-video of travel through our galaxy and beyond. 137 physics and astronomy university students and teaching professors, who were drawn from nine countries, completed the questionnaire. The descriptions provided by them were used to formulate six categories of discernment in relation to multidimensionality. These results are used to make the case that astronomy learning that aims at developing the ability to extrapolate three-dimensionality needs to be grounded in the creation of meaningful motion parallax experiences. Teaching and learning implications are discussed. 

  • 18.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Linder, Cedric
    Uppsala universitet.
    Airey, John
    Uppsala universitet.
    Redfors, Andreas
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    What do teachers of astronomy need to think about?2013Conference paper (Refereed)
    Abstract [en]

    Learning astronomy has exciting prospects for many students; learning about the stars in the

    sky, the planets, galaxies, etc., is often very inspiring and sets the mind on the really big

    aspects of astronomy as a science; the Universe. At the same time, learning astronomy can be

    a challenging endeavor for many students. One of the most difficult things to come to

    understand is how big the Universe is. Despite seeming trivial, size and distances, together

    with the three-dimensional (3D) structure of the Universe, probably present some of the

    biggest challenges in the teaching and learning of astronomy

    (Eriksson, Linder, Airey, &

    Redfors, in preparation; Lelliott & Rollnick, 2010). This is the starting point for every

    astronomy educator. From here, an educationally critical question to ask is: how can we best

    approach the teaching of astronomy to optimize the potential for our students attaining a

    holistic understanding about the nature of the Universe?

    Resent research indicates that to develop students’ understanding about the structure of the

    Universe, computer generated 3D simulations can be used to provide the students with an

    experience that other representations cannot easily provide (Eriksson et al., in preparation;

    Joseph, 2011). These simulations offer disciplinary affordance* through the generation of

    motion parallax for the viewer. Using this background we will present the results of a recent

    investigation that we completed looking at what students’ discern (notice with meaning)

    about the multidimensionality of the Universe. Implications for astronomy education will be

    discussed and exemplified.

    *[T]he inherent potential of [a] representation to provide access to disciplinary knowledge

    (Fredlund, Airey, & Linder, 2012, p. 658)

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (in preparation). Who needs 3D when the

    Universe is flat?

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an

    illustrative example from students sharing knowledge about refraction. European

    Journal of Physics, 33(3), 657.

    Joseph, N. M. (2011). Stereoscopic Visualization as a Tool For Learning Astronomy

    Concepts. (Master of Science), Purdue University, Purdue University Press Journals.

    Lelliott, A., & Rollnick, M. (2010). Big Ideas: A review of astronomy education research

    1974--2008. International Journal of Science Education, 32(13), 1771–1799

  • 19.
    Eriksson, Urban
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Who needs 3D when the universe is flat?2014In: Science Education, ISSN 0036-8326, E-ISSN 1098-237X, Vol. 98, no 3, p. 412-442Article in journal (Refereed)
    Abstract [en]

    An overlooked feature in astronomy education is the need for students to learn to extrapolate three-dimensionality and the challenges that this may involve. Discerning critical features in the night sky that are embedded in dimensionality is a long-term learning process. Several articles have addressed the usefulness of three-dimensional (3D) simulations in astronomy education, but they have neither addressed what students discern nor the nature of that discernment. A Web-based questionnaire was designed using links to video clips drawn from a simulation video of travel through our galaxy and beyond. The questionnaire was completed by 137 participants from nine countries across a broad span of astronomy education. The descriptions provided by the participants were analyzed using hermeneutics in combination with a constant comparative approach to formulate six categories of discernment in relation to multidimensionality. These results are used to make the case that the ability to extrapolate three-dimensionality calls for the creation of meaningful motion parallax experiences.

  • 20.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Lunds universitet.
    Rosberg, Maria
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Disciplinary discernment from Hertzsprung-Russell-diagrams2017Conference paper (Other academic)
    Abstract [en]

    This paper aim at investigating what astronomy students and experts discern from the multitude of different disciplinary affordances available in Hertzsprung-Russell (HR) diagrams. HR-diagrams are central to all of astronomy and astrophysics and used extensively in teaching. However, knowledge about what students and experts discern from these disciplinary representations are not well known at present. HR-diagrams include many disciplinary affordances that may be hidden to the novice student, hence we aim at investigating and describing what astronomy students at different university levels (introductory, undergraduate, graduate), and astronomy educators/professors, discern from such representation – referred to as disciplinary discernment (Eriksson, Linder, Airey, & Redfors, 2014). Data from a web based questionnaire were analysed using the Anatomy of Disciplinary Discernment (ADD) framework by Eriksson et al. (2014). Preliminary results show (1) the developmental nature of disciplinary discernment from the HR-diagram by the participants and (2) the large discrepancy between disciplinary discernment by the astronomy educators and their students. We describe and discuss the qualitative nature of these differences and how this can have implications for teaching and learning astronomy.

  • 21.
    Persson, Jonas
    et al.
    Norge.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Planetarium software in the classroom2016In: Physics Education, ISSN 0031-9120, E-ISSN 1361-6552, Vol. 51, no 2Article in journal (Refereed)
    Abstract [en]

    Students often find astronomy and astrophysics to be most interesting and exciting, but the Universe is difficult to access using only one's eyes or simple equipment available at different educational settings. To open up the Universe and enhance learning astronomy and astrophysics different planetarium software can be used. In this article we discuss the usefulness of such simulation software and give four examples of how such software can be used for teaching and learning astronomy and astrophysics.

1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf