hkr.sePublications
Change search
Refine search result
1234567 51 - 100 of 454
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Einarsson, Elisabeth
    Lund University.
    Geologi för alla: från förskola till gymnasium!2011In: Geologiskt forum, Vol. 18, no 71Article in journal (Other academic)
  • 52.
    Einarsson, Elisabeth
    Lund University.
    Geologi i skolan: en framtida verklighet?2014Conference paper (Other academic)
  • 53.
    Einarsson, Elisabeth
    Lund University.
    Geologi i skolan: en samlingspunkt i inlärningen2012In: Geologiska föreningen, Vol. 19, no 74, p. 31-31Article in journal (Other (popular science, discussion, etc.))
  • 54.
    Einarsson, Elisabeth
    Lund University.
    Geology in school2011Conference paper (Other academic)
  • 55.
    Einarsson, Elisabeth
    Lund University.
    Geology in school: interdisciplinary teaching based on Lgr11 with geology as the theme2014In: Geology in school: interdisciplinary teaching based on Lgr11 with geology as the theme, 2014Conference paper (Other academic)
  • 56.
    Einarsson, Elisabeth
    Lund University.
    Vilken är din favoritplats på skolgården?2010In: Bladet, Vol. 10, no 3Article in journal (Other academic)
  • 57.
    Einarsson, Elisabeth
    et al.
    Lund University.
    Vajda, Vivi
    How improve teachers’ motivation to educate in geology within the Swedish school system2012Conference paper (Other academic)
  • 58.
    Einarsson, Elisabeth
    et al.
    Lund University.
    Örbring, David
    Lund University.
    Ämnesdidaktiska hörnet: skolämnet geografi i relation till geologi2016In: Geografiska notiser, Vol. 74, no 2, p. 61-63Article in journal (Other academic)
  • 59.
    Ekborg, Margareta
    et al.
    Malmö Högskola.
    Ideland, Malin
    Malmö Högskola.
    Lindahl, Britt
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Malmberg, Claes
    Malmö Högskola.
    Ottander, Christina
    Umeå Universitet.
    Rosberg, Maria
    Kristianstad University, School of Education and Environment. Kristianstad University, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Samhällsfrågor i det naturvetenskapliga klassrummet2012Book (Other academic)
    Abstract [sv]

    Ska man vaccinera sig mot influensa, även om det finns risk för biverkningar? Är strålningen från mobiltelefoner farlig eller inte? Och vad stoppar vi i oss? Kan vi lita på att maten vi köper är bra?

    Även om de flesta grundskoleelever inte kommer att välja en naturvetenskaplig yrkesbana kommer de att möta den här typen av frågor, som kallas för samhällsfrågor med naturvetenskapligt innehåll (SNI). Denna bok erbjuder både en teoretisk ram och konkreta exempel på hur man kan jobba med SNI i skolan.

    Elever tycker ofta att frågorna är intressanta, men de fastnar lätt i att diskutera personliga värderingar och det finns en risk att det naturvetenskapliga innehållet och samhällskontexten går förlorad. Läraren behöver därför stödja eleverna i arbetet med att formulera frågor, arbeta källkritiskt, argumentera, planera undersökningar samt värdera resultat och information. Syftet med arbetsmetoderna är att stärka elevernas möjligheter att använda sig av dessa kunskaper i vardagslivet

    Författarna har under tre år bedrivit ett forskningsprojekt om SNI i grundskolan. Erfarenheter och resultat från detta projekt ligger till grund för boken.

  • 60.
    Ekdal, Peter
    et al.
    Kristianstad University, Faculty of Education.
    Giselsson, Anders
    Kristianstad University, Faculty of Education.
    Historiemedvetande: Broar måste slås; mellan nu, då och sedan2019Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Meningen med vårt arbete är att först bringa klarhet i begreppet historiemedvetande, dess historiska framväxt, definition och didaktiska möjligheter. Därefter vill vi undersöka huruvida lärare inom ämnet historia i grundskolan årskurs 4-6 förstår och använder sig av begreppet som ett syfte.

    Majoriteten av forskningen visar på att det finns likheter i tankegångarna kring hur begreppet ska tolkas. En förenklad förklaring på synen är att dåtid- nutid- och framtidsperspektiv i samspel producerar ett historiemedvetande. Olika forskare fokuserar mer på en eller flera av tidsdimensionerna och lägger större tyngd på dessa i skapandet av historiemedvetandet. Oenigheterna kring begreppet historiemedvetande i forskningen ligger i förklaringsmodellen där allt rör sig i en gråskala utan en exakt definition av svart eller vitt. Det är också här vårt motiv för studien kommer in då vi saknar en förklaringsmodell som är fullständig och inte går att ifrågasätta.

    Ingångspunkten för arbetet grundar sig i ett sociokulturellt perspektiv, där Vygotskij menar att det är i samspelet mellan individ och grupp som faktisk kunskap produceras. Under samma förutsättningar som individen är en del av sin sociala och kulturella miljö, där interaktion med resten av gruppen skapar kunskap och identitet, så skapas också historien.

    Metoden som tillämpats i undersökningen av historiemedvetande som fenomen inom grundskolan, kommer ske enligt kvalitativa intervjuer. 

    Historiemedvetande som begrepp är så pass abstrakt att vikten av ett personligt möte med undersökningsobjektet är av stor magnitud och därför lämpar sig intervjun som undersökningsmetod bäst.

    Download full text (pdf)
    Historiemedvetande
  • 61.
    Ekström, Peter
    et al.
    Lunds universitet.
    Hansson, Lena
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Pendrill, Ann-Marie
    Lunds universitet & Göteborgs universitet.
    Questions from teachers and students: 13 years of "Ask-a-physicist" on the Web2013Conference paper (Other academic)
  • 62.
    Emanuelsson, Emma
    et al.
    Kristianstad University College, School of Teacher Education.
    Nyström, Anna
    Kristianstad University College, School of Teacher Education.
    Undervisning i ämnet matematik för elever med dyslexi: en empirisk undersökning genomförd med pedagoger och specialpedagoger2010Independent thesis Basic level (university diploma), 15 credits / 22,5 HE creditsStudent thesis
    Abstract [sv]

    Klasserna i dagens skolor blir allt större eftersom ekonomin stramas åt. Antalet elever per pedagog blir fler och fler, vilket också innebär att fler elever med särskilda behov finns i varje klass. Det forskas en hel del om dyslexi men forskningen är ännu inte fullständig. Det kommer hela tiden nya sätt att se på dyslexi och var dess svårigheter finns och beror på. Syftet med vår uppsats är att undersöka hur skolans pedagoger och specialpedagoger arbetar med elever som har dyslexi för att dessa elever ska uppnå målen i matematik. För att besvara våra forskningsfrågor har vi genomfört sex intervjuer, varav fyra intervjuer med pedagoger och två med specialpedagoger. Undersökningarna har genomförts på olika skolor i Skåne och Blekinge. I intervjuerna framgår det att undervisningen med elever som har dyslexi bör konkretiseras för att skapa en ökad förståelse. För att konkretisera undervisningen bör pedagoger använda olika former av hjälpmedel beroende på eleven och elevens behov.

    Download full text (pdf)
    FULLTEXT01
  • 63.
    Englund, Karin
    et al.
    Kristianstad University College, School of Teacher Education.
    Englesson, Lina
    Kristianstad University College, School of Teacher Education.
    Det är luft i möget: Om elevers förståelse för några vardagliga fysikaliska fenomen.2008Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Grundtanken med fysik är att den ska användas för att förklara omvärlden. Vi upplever att det i skolans fysikundervisning ofta läggs större vikt vid att tillämpa formler än vid att förstå själva fysiken. I den här undersökningen fokuseras därför elevers förståelse för fysikaliska fenomen de möter i sin direkta vardag.

    En klass gymnasietvåor på det naturvetenskapliga programmet fick skriftligt förklara fem fysikaliska vardagsfenomen, där teorin behandlats i Fysik A. Svaren kategoriserades och kategorierna ordnades därefter hierarkiskt efter hur väl de överensstämde med den vetenskapliga förklaringen. Eleverna behövde inte använda vetenskapliga begrepp utan resonemanget var avgörande för kategoriseringen.

    Utifrån resultaten drogs slutsatsen att de allra flesta eleverna gav ett svar inom rätt teoriavsnitt medan endast ett fåtal elever visade på full förståelse. Många av eleverna använde fysikaliska begrepp i svaren, men det är först då eleven kan placera begreppen i ett sammanhang som eleven har fått förståelse för fenomenet och därmed tillägnat sig kunskap.

    Download full text (pdf)
    Det är luft i möget
  • 64.
    Ericsson, Alexandra
    et al.
    Kristianstad University, Faculty of Education.
    Nordgren, Erika
    Kristianstad University, Faculty of Education.
    Teknikämnet ur lärares perspektiv: att nå en likvärdig utbildning2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    I dagens samhälle efterfrågas teknisk kunskap, trots det brister teknikämnet på flera av Sveriges skolor. Med bakgrund i en av Skolinspektionens granskningar har vi därför valt att undersöka hur behöriga tekniklärare i årskurs 4-6 upplever teknikämnet, i syfte att genom ett holistiskt lärande nå en likvärdig utbildning. Arbetet är utfört utifrån ett fenomenografiskt perspektiv genom semistrukturerade intervjuer och innehållsanalys. Genom att analysera resultatet med hjälp av kategoriserade matriser har vi sedan kunnat urskilja vissa framträdande faktorer. Dessa avser bland annat lärares tolkning av kursplanen i teknik, elevers och lärares teknikintresse, antal undervisningstimmar och teknikämnets framtid. Undersökningen kopplas dessutom ihop med Deweys tankar om pragmatismen eftersom dessa bidrar till ett holistiskt lärande. En slutsats som går att dra efter den genomförda undersökningen är att teknikutbildningen inte är likvärdig.

    Download full text (pdf)
    Teknikämnet ur lärares perspektiv
  • 65.
    Ericsson, Hans-Olof
    et al.
    Högskolan i Jönköping.
    Johansson, Per GöranHögskolan i Jönköping.Larsson, Hans AlbinHögskolan i Jönköping.
    Historiedidaktiska perspektiv: bidrag från lärare och studenter vid lärarutbildningen i Jönköping2005Collection (editor) (Other (popular science, discussion, etc.))
  • 66.
    Eriksson, Carina
    et al.
    Kristianstad University, School of Education and Environment.
    Wemmert, Elizabeth
    Kristianstad University, School of Education and Environment.
    Ingen lektion utan lek: leken samt pedagogernas roll för den matematiska förståelsen under grundskolans tidigare år2013Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Vi vill med denna rapport synliggöra om det finns fördelar med att arbeta med matematiklek under grundskolans tidigare år. Syftet är att undersöka om pedagoger använder sig av lek i undervisningen samt om leken kan främja elevers förståelse och kunskap i grundskolan inom ämnet matematik.

     Hur fem filosofer förhåller sig till lek i undervisningen kommer vi att behandla under litteraturgenomgången samt förklara vad lek är och vilken betydelse leken har i utbildningen. Eftersom arbetet handlar om ämnet matematik samt om pedagoger kan använda sig av lek som en metod i matematikundervisningen har vi även beskrivit tidigare forskning om det ämnet.

     Vi har använt oss av en kvalitativ forskningsmetod med frågeformulär. Sju pedagoger har medverkat i insamlandet av datamaterialet till vår empiri. Svaren vi fått är skriva med pedagogernas egna ord och vidarebefordrade till oss genom e- mail.

     Vårt resultat visar att pedagogerna ställer sig positivt till lek som en undervisningsform i ämnet matematik. Alla kunde se vilka fördelar leken kan bidra till matematikutvecklingen för den enskilda eleven och alla svarade att de använder sig av lek i sin matematikundervisning, emellertid olika mycket.

    Download full text (pdf)
    fulltext
  • 67.
    Eriksson, Maria
    et al.
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik.
    Redfors, Andreas
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik.
    Digital loggbok för reflektion och lärande under VFU2018Conference paper (Other academic)
    Abstract [sv]

    Under VFU-period i NT-kurs för blivande grundlärare 4-6 implementerar och utvärderar studenterna en av dem utvecklad undervisningssekvens. Projekt har undersökt hur studenterna under VFU interagerar med två kurslärare genom en digital loggbok. 

    Tio skriftliga loggböcker under genomförd VFU-period i grundskolan, årskurs 4, 5 eller 6 har samlats in. Studenterna var ombedda att dagligen ”skriva av sig” om sina erfarenheter. De fick instruktion att skriva fritt om sådant som kändes angeläget. Följande forskningsfrågor formulerades:

    1. Vad skriver studenter om då de får möjlighet att föra loggbok under sin VFU? 
    2. På vilka sätt har kurslärarnas feedback påverkat innehållet i loggböckerna?

    Sammanfattningar av analysresultat med fokus på NT-didaktik presenteras på konferensen.

  • 68.
    Eriksson, Moa
    et al.
    Nationellt Resurscentrum för Fysik.
    Linder, Cedric
    Uppsala University.
    Eriksson, Urban
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik. Nationellt resurscentrum för fysik, Lunds universitet.
    Towards understanding learning challenges involving sign conventions in introductory level kinematics2018In: Physics Education Research Conference Proceedings 2018 / [ed] A. Traxler, Y. Cao & S. Wolf, Washington, DC: the Physics Education Research Topical Group (PERTG) and the American Association of Physics Teachers (AAPT) , 2018Conference paper (Refereed)
    Abstract [en]

    Coming to appropriately appreciate the meaning of algebraic signs is an important aspect in introductory

    kinematics. However, in this educational context, the “disciplinary relevant aspects” of algebraic signs across

    vector and scalar representations are extremely difficult to discern. Our study explores the “relevance

    structure” that one-dimensional kinematics problems evoked for introductory level university physics

    students across two very different educational systems which have, in PER terms, progressive teaching

    environments: Sweden (n=60) and South Africa (n=24). The outcomes of two previous PER studies are used

    to provide the analytic basis for formulating categories of relevance structure. Aspects of a contemporary

    PER-developed social semiotics perspective (referred to here in terms of communication practices) are used

    to discuss implications for teaching in the given educational context of introductory kinematics.

    Download full text (pdf)
    fulltext
  • 69.
    Eriksson, Urban
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik. Nationellt resurscentrum för fysik, Lunds universitet.
    Disciplinary discernment: Reading the sky in astronomy education2019In: Physical Review Special Topics : Physics Education Research, ISSN 1554-9178, E-ISSN 1554-9178, Vol. 15, no 1, p. Disciplinary discernment: Reading the sky in astronomy education-Article in journal (Refereed)
    Abstract [en]

    This theoretical paper introduces a new way to view and characterize learning astronomy. It describes a framework, based on results from empirical data, analyzed through standard qualitative research method- ology, in which a theoretical model for a vital competency of learning astronomy is proposed: reading the sky, a broad description under with various skills and competencies are included. This model takes into account not only disciplinary knowledge but also disciplinary discernment and extrapolating three dimensionality. Together, these constitute the foundation for the competency referred to as reading the sky. In this paper, these competencies are described and discussed and merged to form a new framework vital for learning astronomy to better match the challenges students face when entering the discipline of astronomy.

    Download full text (pdf)
    fulltext
  • 70.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik. Nationellt resurscentrum för fysik, Lunds universitet.
    Disciplinärt urskiljande av representationer i matematik: vad ser studenterna och vad ser de inte?2018Conference paper (Other academic)
    Abstract [sv]

    Att lära sig matematik innebär att lära sig "läsa" och "skriva" alla de semiotiska resurser som används för att kommunicera ämnet. Med erfarenheter från andra discipliner, så som astronomi och fysik, vet man att det är svårt för studenter att urskilja disciplinära affordanser av semiotiska resurser och därmed lära sig ämnet och bli en del av disciplinen. Preliminära resultat visar på att detta också gäller för urskiljandet av matematiska semiotiska resurser av olika typ. Den teoretiska utgångspunkten för analys av dessa resurser är en generell hierarki som beskriver olika grader av disciplinärt urskiljande: "The anatomy of disciplinary discernment" (Eriksson et al., 2014). Vi kommer att visa och diskutera ett antal exempel hämtade från funktioner och integraler, där disciplinära affordanser identifieras, både synliga och implicita ("appresented"), av olika komplexitetsgrad och dimensionalitet. Med dessa exempel som utgångspunkt diskuteras möjliga strategier för undervisning och lärande.

    Download (pdf)
    presentationsbild
  • 71.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Nationellt resurscentrum för fysik, Lunds universitet.
    Från Stjärnfläckar till Stjärnobservationer: bland galaxer, stjärnor, planeter och tankar kring dessa2017Conference paper (Other academic)
    Abstract [sv]

    Att lära sig astronomi, eller naturvetenskap över lag, involverar så mycket och kan liknas vid att lära sig ett nytt språk. Eleven måste lära sig detta språk och det innefattar, förutom skrivet och talat fackspråk, en mängd mer eller mindre begripliga sk representationerna, aktiviteter och verktyg. Det är därför en grannlaga uppgift att lära sig naturvetenskap och eleverna behöver hjälp med att lära sig naturvetenskapens språk. Det sker i allmänhet samtidigt som de lär sig ämnet, men jag kommer att prata om att det krävs träning av vissa speciella färdigheter för att underlätta denna process. Detta involverar disciplinärt urskiljande samt multidimensionellt tänkande. Jag kommer att beskriva ett teoretiskt ramverk, med praktiska exempel från astronomins värld, på hur detta kan ske.

  • 72.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Nationellt resurscentrum för fysik, Lunds universitet.
    “Reading” representations: what does this have to do with teaching and learning physics?2017Conference paper (Other academic)
    Abstract [en]

    Learning physics can be compared to learning a new language in several respects. This includes learning to “read and write” the representations that carry the meaning of the language. In the case of physics these representations include text, gestures, mathematics, graphs, images, simulations and animations. For those who are fluent in the language, these representations are full of meaning but for the novice learning to discern the relevant disciplinary aspects of these representations (disciplinary discernment) can be a struggle. Research has shown that often teachers assume that students “see” the same things in a representation that they do. However, this is usually not true. Learning to discern disciplinary aspects of representations is something that students need help with (scaffolding). One important aspect of learning representational fluency in physics is that of spatial thinking, in particular learning to extrapolate three-dimensionality from one- and two-dimensional representations.

    In this talk I will present a theoretical framework describing the process of teaching and learning representational disciplinary fluency. I will also provide some examples to illustrate the framework, from the perspectives of the instructor and the student.

    Download full text (pdf)
    fulltext
  • 73.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Nationellt resurscentrum för fysik, Lunds universitet.
    Reading the Sky And The Spiral of Teaching and Learning in AstronomyManuscript (preprint) (Other academic)
    Abstract [en]

    This theoretical paper introduces a new way to view and characterize teaching and learning astronomy. It describes a framework, based on results from empirical data, analyzed through standard qualitative research methodology, in which a theoretical model for vital competencies of learning astronomy is proposed: Reading the Sky . This model takes into account not only disciplinary knowledge  but also disciplinary discernment  and extrapolating three-dimensionality . Together, these constitute the foundation for the competency referred to as Reading the Sky . In this paper, I describe these concepts and how I see them being connected and intertwined to form a new competency model for learning astronomy and how this can be used to inform astronomy education to better match the challenges students face when entering the discipline of astronomy: The Spiral of Teaching and Learning . Two examples are presented to highlight how this model can be used in teaching situations.

    Download full text (pdf)
    fulltext
  • 74.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Nationellt resurscentrum för fysik, Lunds universitet.
    Reading the Sky and The Spiral of Teaching and Learning in Astronomy2017Conference paper (Other academic)
    Abstract [en]

    Teaching and learning astronomy is known to be both exciting and challenging. To learn astronomy demands not only disciplinary knowledge, but also the ability to discern meaning from disciplinary specific representations (disciplinary discernment). This includes the ability to think spatially, in particular, extrapolating three-dimensionality from a one- or two-dimensional input i.e. to be able to visualize in one’s mind how a three-dimensional astronomical object may look from a one- or two-dimensional input such as from a visual image or a mathematical representation. In this talk I demonstrate that these abilities are deeply intertwined, and that to learn astronomy at any level demands becoming fluent in all three aspects (disciplinary knowledge, disciplinary discernment and spatial thinking). A framework is presented for how these competencies can be described, and combined, as a new and innovative way to frame teaching and learning in astronomy. It is argued that using this framework “Reading the Sky” optimizes the learning outcomes for students. The talk also suggests strategies for how to implement this approach for improving astronomy teaching and learning overall.

    Download full text (pdf)
    fulltext
  • 75.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Reading the sky and the spiral of teaching and learning in astronomy2015Conference paper (Refereed)
    Abstract [en]

    Teaching and learning astronomy is known to be both exciting and challenging. To learn astronomy demands not only disciplinary knowledge, but also ability to discern affordances from disciplinary specific representations used within the discourse, which we call disciplinary discernment, and ability to think spatially, which we refer to as extrapolating three-dimensionality from a two dimensional input. Disciplinary knowledge involves all the knowledge that constitutes the discipline, disciplinary discernment involves discernment of the affordances of disciplinaryspecific representations, and extrapolating three-dimensionality involves the ability to visualize in ones mind how a three-dimensional astronomical object may look from a two-dimensional input (image or simulation). In this paper we argue that these abilities are intertwined and to learn astronomy at any level demands becoming fluent in all three. A framework is presented for how these abilities can be described and combined as a new and innovative way to frame teaching and learning in astronomy for optimizing the learning outcome of students - what we refer to as developing the ability to Read the Sky. We conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this to improve astronomy education.

    Download full text (pdf)
    fulltext
  • 76.
    Eriksson, Urban
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Reading the sky: from starspots to spotting stars2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis encompasses two research fields in astronomy: astrometry and astronomy education and they are discussed in two parts. These parts represent two sides of a coin; astrometry, which is about constructing 3D representations of the Universe, and AER, where for this thesis, the goal is to investigate university students’ and lecturers’ disciplinary discernment vis-à-vis the structure of the Universe and extrapolating three-dimensionality.

    Part I presents an investigation of stellar surface structures influence on ultra-high-precision astrometry. The expected effects in different regions of the HR-diagram were quantified. I also investigated the astrometric effect of exoplanets, since astrometric detection will become possible with projects such as Gaia. Stellar surface structures produce small brightness variations, influencing integrated properties such as the total flux, radial velocity and photocenter position. These properties were modelled and statistical relations between the variations of the different properties were derived. From the models it is clear that for most stellar types the astrometric jitter due to stellar surface structures is expected to be of order 10 μAU or greater. This is more than the astrometric displacement typically caused by an Earth-sized exoplanet in the habitable zone, which is about 1–4 μAU, making astrometric detection difficult.

    Part II presents an investigation of disciplinary discernment at the university level. Astronomy education is a particularly challenging experience for students because discernment of the ‘real’ Universe is problematic, making interpretation of the many disciplinary-specific representations used an important educational issue. The ability to ‘fluently’ discern the disciplinary affordances of these representations becomes crucial for the effective learning of astronomy. To understand the Universe I conclude that specific experiences are called. Simulations could offer these experiences, where parallax motion is a crucial component. In a qualitative study, I have analysed students’ and lecturers’ discernment while watching a simulation video, and found hierarchies that characterize the discernment in terms of three-dimensionality extrapolation and an Anatomy of Disciplinary Discernment. I combined these to define a new construct: Reading the Sky. I conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this in astronomy education.

    Download full text (pdf)
    fulltext
  • 77.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Teaching and learning in astronomy education – a spiral approach to reading the sky2015Conference paper (Refereed)
    Abstract [en]

    Teaching and learning astronomy is known to be both exciting and challenging. However, learning astronomy at university level is a demanding task for many students. The learning pro-cess involves not only disciplinary knowledge, but also the ability to discern affordances from disciplinary specific representations used within the astronomy discourse, which we call discipli-nary discernment (Eriksson, Linder, Airey, & Redfors, 2014a) and ability to think spatially, which we refer to as extrapolating three-dimensionality from a two dimensional input (Eriksson, Linder, Airey, & Redfors, 2014b). Disciplinary knowledge involves all the knowledge that con-stitutes the discipline, disciplinary discernment involves discernment of the affordances of disci-plinary-specific representations, and extrapolating three-dimensionality involves the ability to visualize in ones mind how a three-dimensional astronomical object may look from a two-dimensional input (image or simulation). In this paper we argue that these abilities are inter-twined and to learn astronomy at any level demands becoming fluent in all three abilities. A framework is presented for how these abilities can be described and combined as a new and in-novative way to frame teaching and learning in astronomy at university level for optimizing the learning outcome of students - what we refer to as developing the ability of Reading the Sky (Eriksson, 2014). We conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this to improve astronomy education.

    References

    Eriksson, Urban. (2014). Reading the Sky - From Starspots to Spotting Stars. (Doctor of Philosophy), Uppsala University, Uppsala. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234636  

    Eriksson, Urban, Linder, Cedric, Airey, John, & Redfors, Andreas. (2014a). Introducing the Anatomy of Disciplinary Discernment - An example for Astronomy. European Journal of Science and Mathematics Education, 2(3), 167-182. 

    Eriksson, Urban, Linder, Cedric, Airey, John, & Redfors, Andreas. (2014b). Who needs 3D when the Universe is flat? Science Education, 98(3), 31. 

  • 78.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Nationellt resurscentrum för fysik, Lunds universitet.
    The outer universe and the inner: what is the connection?2017Conference paper (Other academic)
    Abstract [en]

    This talk concerns astronomy eduction resercher and focus on what visualizations offer for learning astronomy at all levels. I will be presenting reserach results concerning disciplinary discernment and spatial thinking in relation to experiences offered by planetarium presentations.

    Download full text (pdf)
    fulltext
  • 79.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    The spiral of teaching and learning in astronomy education2015Conference paper (Refereed)
    Abstract [en]

    Teaching and learning astronomy is known to be both exciting and challenging. To learn astronomy demands not only disciplinary knowledge, but also ability to discern affordances from disciplinary specific representations used within the discourse, which we call disciplinary dis- cernment (Eriksson, Linder, Airey, & Redfors, 2014a) and ability to think spatially, which we refer to as extrapolating three-dimensionality from a two dimensional input (Eriksson, Linder, Airey, & Redfors, 2014b). Disciplinary knowledge involves all the knowledge that constitutes the discipline, disciplinary discernment involves discernment of the affordances of disciplinary- specific representations, and extrapolating three-dimensionality involves the ability to visualize in ones mind how a three-dimensional astronomical object may look from a two-dimensional input (image or simulation). In this paper we argue that these abilities are intertwined and to learn as- tronomy at any level demands becoming fluent in all three abilities. A framework is presented for how these abilities can be described and combined as a new and innovative way to frame teach- ing and learning in astronomy at university level for optimizing the learning outcome of students - what we refer to as developing the ability of Reading the Sky (Eriksson, 2014). We conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this to improve astronomy education.

    Download full text (pdf)
    fulltext
  • 80.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    The Spiral of Teaching and Learning in Physics and Astronomy2016Conference paper (Refereed)
    Abstract [en]

    When students start to learn physics and astronomy, they immediately are confronted with a multitude of representations packed with disciplinary information. This information is embedded in these representations and the students need to learn to discern the relevant information. This is not straightforward, and requires a lot of teaching and practice before being mastered. It carries many similarities to learning a new language – the language of physics, astronomy, or other sciences. 

    However, it all starts with disciplinary discernment from those representations, something that has been shown to be challenging for students. Often the teacher who knows the representations and their appresented meaning—their disciplinary affordances—assumes that the students discern the same things in those representations as the teacher does. Research has shown that this is not the case and such assumptions leads to educational problems for the students and make learning physics or astronomy unnecessary difficult, or even inaccessible to the students. The students need be given the opportunity to develop their competency in discerning disciplinary-specific relevant aspects from representations; a competency referred to as Reading the Sky in an astronomy context, and described by the Anatomy of Disciplinary Discernment (Eriksson, 2014a; Eriksson et al., 2014b).

    Furthermore, physics and astronomy are subjects aiming to describe the real multidimensional world, hence involve a substantial amount of spatial thinking. The students need to learn to extrapolate three-dimensionality in their minds from two-dimensional representations, which have been shown to be challenging to students. Unfortunately, this competency is often taken for granted and rarely addressed in teaching (Eriksson et al., 2014c).

    In this talk we present a model in which we identify and describe the critical competencies needed to “read” disciplinary-specific representations; it concerns not only disciplinary discernment but also spatial thinking and disciplinary knowledge. These are combined into the Spiral of Teaching and Learning (STL), a new and powerful model for optimizing teaching and learning science (Eriksson, 2014a; Eriksson, 2015). We discuss consequences and possibilities when applying the STL model and give an example of how this model can be used in teaching and learning astronomy.

  • 81.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Undervisning på distans – framtiden för universitet och högskolor?: ett exempel från astronomiundervisning på Högskolan Kristianstad2016In: Högskolepedagogisk debatt, ISSN 2000-9216, no 1, p. 46-73Article in journal (Refereed)
    Abstract [sv]

    Dagens studenter är mycket mer flexibla i sina studier än tidigare. Idag läser många studenter kurser på olika universitet och högskolor samtidigt. Detta är möjligt genom att många kurser och program ges på distans via internet. I denna artikel diskuteras de möjligheter och begränsningar som jag anser finns med den undervisningsform som allt mer präglar undervisning vid universitet och högskolor, nationellt och internationellt; distansundervisning.

    Download full text (pdf)
    fulltext
  • 82.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University.
    Watching the sky: new realizations, new meanings, and surprizing aspects in university level astronomy2011In: E-Book Proceedings of the ESERA 2011 Conference: Science learning and Citizenship. Part 3: Teaching and learning science / [ed] Catherine Bruguière, Andrée Tiberghien, Pierre Clément, Lyon, France: European Science Education Research Association , 2011, p. 57-63Conference paper (Refereed)
    Abstract [en]

    Learning astronomy is challenging at all levels due to the highly specialized form of communication used to share knowledge. When taking astronomy courses at different levels at university, learners are exposed to a variety of representations that are intended to help them learn about the structure and complexity of the Universe. However, not much is known about the reflective awareness that these representations evoke. Using a simulation video that provides a vivid virtual journey through our Milky Way galaxy, the nature of this awareness is captured and categorised for an array of learners (benchmark by results obtained for experts). The results illustrate how the number and nature of new things grounded in dimensionality, scale, time and perspective reflective awareness can too easily be taken for granted by both teachers and learners.

    Download full text (pdf)
    fulltext
  • 83.
    Eriksson, Urban
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Introducing the anatomy of disciplinary discernment: an example from astronomy2014In: European Journal of Science and Mathematics Education, ISSN 2301-251X, E-ISSN 2301-251X, Vol. 2, no 3, p. 167-182Article in journal (Refereed)
    Abstract [en]

    Education is increasingly being framed by a competence mindset; the value of knowledge lies much more in competence performativity and innovation than in simply knowing. Reaching such competency in areas such as astronomy and physics has long been known to be challenging. The movement from everyday conceptions of the world around us to a disciplinary interpretation is fraught with pitfalls and problems. Thus, what underpins the characteristics of the disciplinary trajectory to competence becomes an important educational consideration. In this article we report on a study involving what students and lecturers discern from the same disciplinary semiotic resource. We use this to propose an Anatomy of Disciplinary Discernment (ADD), a hierarchy of what is focused on and how it is interpreted in an appropriate, disciplinary manner, as an overarching fundamental aspect of disciplinary learning. Students and lecturers in astronomy and physics were asked to describe what they could discern from a video simulation of travel through our Galaxy and beyond. In all, 137 people from nine countries participated. The descriptions were analysed using a hermeneutic interpretive study approach. The analysis resulted in the formulation of five qualitatively different categories of discernment; the ADD, reflecting a view of participants’ competence levels. The ADD reveals four increasing levels of disciplinary discernment: Identification, Explanation, Appreciation, and Evaluation. This facilitates the identification of a clear relationship between educational level and the level of disciplinary discernment. The analytical outcomes of the study suggest how teachers of science, after using the ADD to assess the students disciplinary knowledge, may attain new insights into how to create more effective learning environments by explicitly crafting their teaching to support the crossing of boundaries in the ADD model.  

    Download full text (pdf)
    fulltext
  • 84.
    Eriksson, Urban
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University & Linnéuniversitetet.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Tell me what you see: differences in what is discerned when professors and students view the same disciplinary semiotic resource2014Conference paper (Refereed)
    Abstract [en]

    Traditionally, astronomy and physics have been viewed as difficult subjects to master. The movement from everyday conceptions of the world around us to a disciplinary interpretation is fraught with pitfalls and problems. What characterises a disciplinary insider’s discernment of phenomena in astronomy and how does it compare to the views of newcomers to the field? In this paper we report on a study into what students and professors discern (cf. Eriksson et al, in press) from the same disciplinary semiotic resource and use this to propose an Anatomy of Disciplinary Discernment (ADD) as an overarching characterization of disciplinary learning.

    Students and professors in astronomy and physics were asked to describe what they could discern from a simulation video of travel through our Galaxy and beyond (Tully, 2012). In all, 137 people from nine countries participated. The descriptions were analysed using a hermeneutic, constant comparison approach (Seebohm, 2004; Strauss, 1987). Analysis culminated in the formulation of five hierarchically arranged, qualitatively different categories of discernment. This ADD modelling of the data consists of one non-disciplinary category and four levels of disciplinary discernment: Identification, Explanation, Appreciation, and Evaluation. Our analysis demonstrates a clear relationship between educational level and the level of disciplinary discernment.

     

    The analytic outcomes of the study suggest that teachers may create more effective learning environments by explicitly crafting their teaching to support the discernment of various aspects of disciplinary semiotic resources in order to facilitate the crossing of boundaries in the ADD model.

  • 85.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Linder, Cedric
    Uppsala universitet.
    Airey, John
    Uppsala universitet.
    Redfors, Andreas
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    The overlooked challenge of learning to extrapolate three-dimensionality2013Conference paper (Refereed)
    Abstract [en]

    Learning astronomy has many learning challenges due to the highly diverse, conceptual, and theoretical thinking used in the discipline. One taken for granted challenge is the learning to 

    extrapolate three-dimensionality. Although we have the ability to see our surroundings in three- dimensional terms, beyond a distance of about 200m this ability quickly becomes very limited. So, when looking up at the night sky, learning to discern critical features that are embedded in dimensionality does not come easily. There have been several articles addressing how fruitful 3D simulations are for astronomy education, but they do not address what students discern, nor the nature of that discernment. Taking the concept of discernment to be about noticing something and assigning meaning to it, our research question is: In terms of dimensionality, what do astronomy/physics students and professors discern when engaging with a simulated video fly- through of our Galaxy and beyond?

    A web-based questionnaire was designed using links to video clips drawn from a well-regarded simulation-video of travel through our galaxy and beyond. 137 physics and astronomy university students and teaching professors, who were drawn from nine countries, completed the questionnaire. The descriptions provided by them were used to formulate six categories of discernment in relation to multidimensionality. These results are used to make the case that astronomy learning that aims at developing the ability to extrapolate three-dimensionality needs to be grounded in the creation of meaningful motion parallax experiences. Teaching and learning implications are discussed. 

  • 86.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Linder, Cedric
    Uppsala universitet.
    Airey, John
    Uppsala universitet.
    Redfors, Andreas
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    What do teachers of astronomy need to think about?2013Conference paper (Refereed)
    Abstract [en]

    Learning astronomy has exciting prospects for many students; learning about the stars in the

    sky, the planets, galaxies, etc., is often very inspiring and sets the mind on the really big

    aspects of astronomy as a science; the Universe. At the same time, learning astronomy can be

    a challenging endeavor for many students. One of the most difficult things to come to

    understand is how big the Universe is. Despite seeming trivial, size and distances, together

    with the three-dimensional (3D) structure of the Universe, probably present some of the

    biggest challenges in the teaching and learning of astronomy

    (Eriksson, Linder, Airey, &

    Redfors, in preparation; Lelliott & Rollnick, 2010). This is the starting point for every

    astronomy educator. From here, an educationally critical question to ask is: how can we best

    approach the teaching of astronomy to optimize the potential for our students attaining a

    holistic understanding about the nature of the Universe?

    Resent research indicates that to develop students’ understanding about the structure of the

    Universe, computer generated 3D simulations can be used to provide the students with an

    experience that other representations cannot easily provide (Eriksson et al., in preparation;

    Joseph, 2011). These simulations offer disciplinary affordance* through the generation of

    motion parallax for the viewer. Using this background we will present the results of a recent

    investigation that we completed looking at what students’ discern (notice with meaning)

    about the multidimensionality of the Universe. Implications for astronomy education will be

    discussed and exemplified.

    *[T]he inherent potential of [a] representation to provide access to disciplinary knowledge

    (Fredlund, Airey, & Linder, 2012, p. 658)

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (in preparation). Who needs 3D when the

    Universe is flat?

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an

    illustrative example from students sharing knowledge about refraction. European

    Journal of Physics, 33(3), 657.

    Joseph, N. M. (2011). Stereoscopic Visualization as a Tool For Learning Astronomy

    Concepts. (Master of Science), Purdue University, Purdue University Press Journals.

    Lelliott, A., & Rollnick, M. (2010). Big Ideas: A review of astronomy education research

    1974--2008. International Journal of Science Education, 32(13), 1771–1799

  • 87.
    Eriksson, Urban
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Who needs 3D when the universe is flat?2014In: Science Education, ISSN 0036-8326, E-ISSN 1098-237X, Vol. 98, no 3, p. 412-442Article in journal (Refereed)
    Abstract [en]

    An overlooked feature in astronomy education is the need for students to learn to extrapolate three-dimensionality and the challenges that this may involve. Discerning critical features in the night sky that are embedded in dimensionality is a long-term learning process. Several articles have addressed the usefulness of three-dimensional (3D) simulations in astronomy education, but they have neither addressed what students discern nor the nature of that discernment. A Web-based questionnaire was designed using links to video clips drawn from a simulation video of travel through our galaxy and beyond. The questionnaire was completed by 137 participants from nine countries across a broad span of astronomy education. The descriptions provided by the participants were analyzed using hermeneutics in combination with a constant comparative approach to formulate six categories of discernment in relation to multidimensionality. These results are used to make the case that the ability to extrapolate three-dimensionality calls for the creation of meaningful motion parallax experiences.

  • 88.
    Eriksson, Urban
    et al.
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik. Nationellt resurscentrum för fysik, Lunds universitet.
    Pendrill, Anne-Marie
    Lund University.
    Up and down, light and heavy, fast and slow: but where?2019In: Physics Education, ISSN 0031-9120, E-ISSN 1361-6552, Vol. 54, no 2Article in journal (Refereed)
    Abstract [en]

    Vertical amusement rides let your body experience the tickling sensation of feeling light, but also feeling much heavier than as usual, due to velocity changes as you move up and down. Family rides offer different possibilities to visualize the forces that are experienced by your accelerating body. This paper presents a number of different ways to view and experience the motion in a small vertical amusement ride. A smartphone includes an accelerometer that can provide a graph of the forces acting during the ride. A movie from the smartphone camera lets students recall the motion which can then be analysed in more detail. The complementary representations may help students develop a deeper understanding of the relation between force and motion. The affordances of these different semiotic resources are analysed in some detail. In addition, we discuss responses from a number of students to questions about where you feel light and where you feel heavy. We find that the experience of the body is an underused resource in physics teaching.

    Download full text (pdf)
    fulltext
  • 89.
    Eriksson, Urban
    et al.
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik. Nationellt resurscentrum för fysik, Lunds universitet.
    Pendrill, Ann-Marie
    Nationellt resurscentrum för fysik.
    Up and down, light and heavy, fast and slow: but where?2019In: Physics Education, ISSN 0031-9120, E-ISSN 1361-6552, Vol. 54, no 2Article in journal (Refereed)
    Abstract [en]

    Vertical amusement rides let your body experience the tickling sensation of feeling light, but also feeling much heavier than as usual, due to velocity changes as you move up and down. Family rides offer different possibilities to visualize the forces that are experienced by your accelerating body. This paper presents a number of different ways to view and experience the motion in a small vertical amusement ride. A smartphone includes an accelerometer that can provide a graph of the forces acting during the ride. A movie from the smartphone camera lets students recall the motion which can then be analysed in more detail. The complementary representations may help students develop a deeper understanding of the relation between force and motion. The affordances of these different semiotic resources are analysed in some detail. In addition, we discuss responses from a number of students to questions about where you feel light and where you feel heavy. We find that the experience of the body is an underused resource in physics teaching.

    Download full text (pdf)
    fulltext
  • 90.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Lunds universitet.
    Rosberg, Maria
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Disciplinary discernment from Hertzsprung-Russell-diagrams2017Conference paper (Other academic)
    Abstract [en]

    This paper aim at investigating what astronomy students and experts discern from the multitude of different disciplinary affordances available in Hertzsprung-Russell (HR) diagrams. HR-diagrams are central to all of astronomy and astrophysics and used extensively in teaching. However, knowledge about what students and experts discern from these disciplinary representations are not well known at present. HR-diagrams include many disciplinary affordances that may be hidden to the novice student, hence we aim at investigating and describing what astronomy students at different university levels (introductory, undergraduate, graduate), and astronomy educators/professors, discern from such representation – referred to as disciplinary discernment (Eriksson, Linder, Airey, & Redfors, 2014). Data from a web based questionnaire were analysed using the Anatomy of Disciplinary Discernment (ADD) framework by Eriksson et al. (2014). Preliminary results show (1) the developmental nature of disciplinary discernment from the HR-diagram by the participants and (2) the large discrepancy between disciplinary discernment by the astronomy educators and their students. We describe and discuss the qualitative nature of these differences and how this can have implications for teaching and learning astronomy.

    Download full text (pdf)
    fulltext
  • 91.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Nationellt resurscentrum för fysik, Lunds universitet.
    Rosberg, Maria
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Disciplinary discernment in astronomy education: Hertzsprung-Russell-diagrams2017Conference paper (Other academic)
    Abstract [en]

    This paper aim at investigating what astronomy students and experts discern from the multitude of different disciplinary affordances available in Hertzsprung-Russell (HR) diagrams. HR-diagrams are central to all of astronomy and astrophysics and used extensively in teaching. However, knowledge about what students and experts discern from these disciplinary representations are not well known at present. HR-diagrams include many disciplinary affordances that may be hidden to the novice student, hence we aim at investigating and describing what astronomy students at different university levels (introductory, undergraduate, graduate), and astronomy educators/professors, discern from such representation – referred to as disciplinary discernment. Data from a web based questionnaire were analysed using the Anatomy of Disciplinary Discernment (ADD) framework by Eriksson et al.(2014). Preliminary results show (1) the developmental nature of disciplinary discernment from the HR-diagram by the participants and (2) the large discrepancy between disciplinary discernment by the astronomy educators and their students. We describe and discuss the qualitative nature of these differences and implications for teaching and learning astronomy.

    Download full text (pdf)
    fulltext
  • 92.
    Eriksson, Urban
    et al.
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik. Nationellt resurscentrum för fysik, Lunds universitet.
    Steffen, Wolfgang
    UNAM.
    Extrapolation of 3D and its importance for teaching and learning physics and astronomy: an example from astrophysics2019Conference paper (Refereed)
    Abstract [en]

    Learning astronomy at higher level can be both exciting and challenging. Entering the discipline of astronomy involves learning the way that astronomers communicate knowledge, using a multitude of disciplinary specific semiotic recourses to understand the multidimensional universe. A new-to-the-discipline student will need to learn to “read” and “write” all these resources in her endeavour to learn astronomy and become part of the discipline. In this paper, we present a study where university students and professors are presented by different 2D and pseudo-3D resources—representations of astronomical objects—and asked about how these objects may look in 3D, i.e. we ask them to extrapolate three-dimensionality from 2D inputs. These inputs are 2D pictorial representation and world-class 3D rotating volumetric models presented on flat screens. Data were collected using a web-based questionnaire from 53 participants in four different countries. From the results, we find that all participants struggle to find cues for depth perception in the 2D pictorial representations. As could be expected, the student participants were much worse in doing so than the astronomers, but with one exception: students used the offered motion parallax as their main cue when this was available. The astronomers used many cues in their struggle to perceive depth but surprisingly did not use the presented parallax motion to a large extent. We interpret this as follows: for the students, they lack the knowledge to use disciplinary cues and used the only cue that they know from experience, namely, parallax motion. For the astronomers, they used a multitude of disciplinary cues based on their extensive disciplinary knowledge, and did not find the new cue, motion parallax, as useful as the ones that they were used to use. In this paper, we present and discuss these results and its implication for teaching astronomy.

    Download full text (pdf)
    fulltext
    Download full text (pdf)
    fulltext
  • 93.
    Erlandsson, Cecilia
    Kristianstad University, School of Education and Environment.
    Matematikångest: "Det är liksom helt svart..."2017Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Under mina tjugo år som matematiklärare har jag mött ett flertal elever som utvecklat en oro och en ängslan för matematikämnet. Mitt intresse för matematikångest har växt vilket resulterat i denna studie. Syftet med studien är att undersöka högstadieelevers känslomässiga inställning till matematikämnet samt belysa elevers känslor vid upplevd matematikångest. För att få svar på mina frågeställningar har jag låtit 117 högstadieelever i årskurs 7–9 besvara en enkät om ungdomars inställning till matematikämnet samt djupintervjuat fyra flickor i årskurs 7 och 8 om deras upplevelser av matematikångest. Studien har inspirerats av en fenomenologisk ansats. För att tolka empirin har jag använt både ett sociokulturellt och ett relationellt perspektiv då utgångspunkten är att samspelet är centralt i lärandet och utbildning kan ses som en relationell process. Enkätundersökningen visade att ungdomarnas negativa attityd inför matematikämnet är omfattande. 36 % upplevde någon negativ känsla i samband med matematikämnet och uppgav panik, stress, ångest, rädsla och kaos som exempel. I samband med matematikprov angav hela 95 % minst en negativ känsla. Resultatet vid djupintervjuerna visade att flickorna hade en negativ inställning till matematikämnet och att matematiken gjorde dem ledsna. Det var främst i relation till omgivningen som deras negativa känslor uppkommit. Flickorna pekade på dåliga lärare, krav från föräldrar och att jämföra sig med klasskamrater som möjliga orsaker. Något tydligt mönster om hur flickorna ville bli hjälpta återfanns inte i intervjuerna. Specialläraren bör tillsammans med matematiklärare skapa en tillgänglig lärmiljö i matematik för alla elever - en trivsam och positiv klassrumsmiljö där inga negativa attityder kan slå rot.

    Download full text (pdf)
    fulltext
  • 94.
    Eskilsson, Olle
    et al.
    Kristianstad University, Department of Mathematics and Science.
    Redfors, AndreasKristianstad University, Department of Mathematics and Science. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Ämnesdidaktik ur ett nationellt och internationellt perspektiv: rapport från Rikskonferensen i ämnesdidaktik 20062007Conference proceedings (editor) (Other academic)
    Abstract [en]

    Den 4-5 maj 2006 anordnade Högskolan Kristianstad i samarbete med det nationella nätverket för ämnesdidaktik Ämnesdidaktik ur ett nationellt och internationellt perspektiv, den tredje Rikskonferensen i ämnesdidaktik.

    Den ämnesdidaktiska forskningen syftar till att öka kunskapen om undervisning och lärande i specificerade och tydligt avgränsade ämnesinnehåll. Den söker inte efter innehållsoberoende beskrivningar på en generell nivå, utan istället karakteriseras forskningen av en insikt om det specifika innehållets avgörande betydelse för lärande och undervisning.

    Konferens genomfördes i nätverkets anda och såväl ämnesspecifika som ämnesblandade sessioner genomfördes. Stimulerande diskussioner upp­kommer då forskare från olika ämnens ämnesdidaktik träffas och bryter perspektiv. Ett internationellt perspektiv var speciellt i fokus denna gång.

    På konferensen gavs sex plenarföreläsningar och det presenterades ca 60 forskningsprojekt om lärande och undervisning i skola och högskola av författare från de nordiska länderna. Huvuddelen av svenska högskolor och universitet var representerade. Nationella, nordiska och internationella projekt presenterades och diskuterades.

    I denna konferensbok presenteras ett urval av de på konferensen presenterade projekten. Urvalet är baserat på kvalitet och representativitet.

  • 95.
    Ewald, Annette
    Kristianstad University, School of Education and Environment.
    "Jag lärde mig själv till slut": om hinder och möjligheter i Marias språkutveckling1993Report (Other (popular science, discussion, etc.))
  • 96. Freij, Maria
    et al.
    Ahlin, Lena
    Going forward with feedback:: on autonomy and teacher feedback2014Conference paper (Other academic)
  • 97.
    Freij, Maria
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Humaniora.
    Ahlin, Lena
    Kristianstad University, School of Education and Environment, Avdelningen för Humaniora.
    (Re-)examining the essay: alternative approaches to writing assessment2016Conference paper (Other academic)
  • 98.
    Friberg, Ingela
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Pedagogik.
    Bengtsson, Ingmarie
    Kristianstad University, School of Education and Environment, Avdelningen för Pedagogik.
    The importance of consensus among teachers2014Conference paper (Refereed)
  • 99.
    Fridberg, Marie
    et al.
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik.
    Jonsson, Agneta
    Kristianstad University, Faculty of Education, Avdelningen för utbildningsvetenskap inriktning fritidshem och förskola. Kristianstad University, Faculty of Education, Forskningsmiljön Barndom, Lärande och Utbildning (BALU). Kristianstad University, Faculty of Education, Forskningsmiljön Forskning Relationell Pedagogik (FoRP). Kristianstad University, Forskningsmiljön Arbete i skolan (AiS).
    Redfors, Andreas
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik. Kristianstad University, Research Platform Collaboration for Education.
    Thulin, Susanne
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Forskningsmiljön Barndom, Lärande och Utbildning (BALU). Kristianstad University, Faculty of Education, Avdelningen för utbildningsvetenskap inriktning fritidshem och förskola.
    Teaching chemistry and physics in preschool: a matter of establishing intersubjectivity2019In: International Journal of Science Education, ISSN 0950-0693, E-ISSN 1464-5289, Vol. 41, no 17, p. 2542-2556Article in journal (Refereed)
    Abstract [en]

    This paper describes analysis of teaching instances that are part of an in-service preschool teachers programme about chemistry and physics in preschool. The aim is to develop knowledge about the communication established between teacher and children in relation to an object of learning, specifically the role of intersubjective communication in relation to an object of learning. A set of science activities with a specified object of learning was developed in groups of teachers and researchers. A qualitative analysis of the communication in relation to the chosen object of learning was performed. The focus of the analysis was excerpts representing differences in intersubjectivity related to the object of learning and what can be said to characterise the communication between teachers and children in these situations. The results show that intersubjectivity can occur in different ways with different consequences for children’s opportunities to experience the intended object of learning. In connection to this, the importance of teachers having a mutual simultaneity in the communication with children about a specific content is highlighted. The teachers have to create links between the child’s perspective and the object of learning. Intermediary objects of learning are discussed as supporting elements in the conquest of new knowledge.

    Download full text (pdf)
    fulltext
  • 100.
    Fridberg, Marie
    et al.
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik. Kristianstad University, Research Platform Collaboration for Education.
    Jonsson, Agneta
    Kristianstad University, Faculty of Education, Avdelningen för utbildningsvetenskap inriktning fritidshem och förskola. Kristianstad University, Faculty of Education, Forskningsmiljön Barndom, Lärande och Utbildning (BALU). Kristianstad University, Research Platform Collaboration for Education.
    Redfors, Andreas
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, Faculty of Education, Avdelningen för matematik- och naturvetenskapernas didaktik. Kristianstad University, Research Platform Collaboration for Education.
    Thulin, Susanne
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Pedagogik. Kristianstad University, Faculty of Education, Forskningsmiljön Barndom, Lärande och Utbildning (BALU). Kristianstad University, Research Platform Collaboration for Education.
    The role of intermediary objects of learning in early years chemistry and physics2020In: Early Childhood Education Journal, ISSN 1082-3301, E-ISSN 1573-1707Article in journal (Refereed)
    Abstract [en]

    The overall aim of the present study is to study model-based teaching and collaborative inquiry learning of chemical processes and physical phenomena in preschool, with a specific focus on the verbal communication established between teachers and children (4-5 years old). According to variation theory, learning is always directed at a specific content, called the object of learning. This study aims at highlighting what ‘threatens’ the teacher’s and preschool children’s intersubjectivity during the teaching of chemistry and physics content, and at discussing possible ways to continue the teaching of an object of learning, once sufficient intersubjectivity in a teaching/learning situation has been lost. The result shows the need for the teacher to divide and split a larger object of learning, such as e.g. water purification, into smaller learning steps ‘on the way’ in order to hinder breaks in intersubjectivity that otherwise may arise. We introduce the notion of ‘overarching object of learning’ and ‘intermediary object of learning’, and the intermediary objects of learning identified in this study are categorized as belonging to three different themes: the role of words, the role of theoretical models and science concepts and the role of analogies and abstractions. The teacher’s awareness of intermediary objects of learning as critical aspects for children’s individual learning is crucial for the teaching of everyday science in a preschool setting.

    Download full text (pdf)
    fulltext
1234567 51 - 100 of 454
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf