hkr.sePublikasjoner
Endre søk
Begrens søket
123 101 - 122 of 122
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 101.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Hansson, Lena
    Högskolan Kristianstad, Sektionen för lärande och miljö.
    Rosberg, Maria
    Högskolan Kristianstad, Sektionen för lärande och miljö.
    Socio-scientific collaborative inquiry in astrobiology: the design and implementation of a digital learning environment2010Inngår i: Contemporary science education research: teaching / [ed] M. F. Taşar & G. Çakmakci, 2010, s. 231-241Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In a European project – CoReflect – researchers in seven countries are developing, implementing and evaluating teaching sequences using a web-based platform (STOCHASMOS). The interactive web-based inquiry materials support collaborative and reflective work. The project methodology is based on the idea of design-based research, which seeks to bridge the often disconnected worlds of academia and educational practices. Hence, the teachers are engaged throughout the project. The learning environments will be iteratively tested and refined, first as pilot projects, then during local implementations, and finally during implementations and synthesis work at the European level. All learning environments are focusing “socio-scientific” issues.  In this article we report from the pilot of the Swedish learning environment with an Astrobiology context. The socio-scientific driving questions were “Should we look for, and try to contact, extraterrestrial life?”, and “Should we transform Mars into a planet where humans can live in the future?” The students are in their last year of compulsory school (16 years old), and worked together in triads. We report from the groups’ decisions and arguments used. A majority of the groups express reluctance towards both the search of extraterrestrial life and the terraforming of Mars.

  • 102.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Hansson, Lena
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Rosberg, Maria
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Teaching astrobiology from a socio-scientific perspective using a digital learning environment2010Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We report from the European project CoReflect (www.coreflect.org) where groups in Cyprus, England, Germany, Greece, Israel, Sweden and the Netherlands are developing, implementing and evaluating teaching sequences using the internet platform Stochasmos (Kyza & Constantinou, 2007). Within this design-based project (Barab & Squire, 2004) teach­ers and researchers work together on the design of digi­tal learning environ­ments (LE:s). The approach seeks to bridge the worlds of academia and the world of educational practice. All LE:s build on dif­ferent socio-scientific issues (Sadler, 2004), and Stochasmos are used to help teachers scaf­fold students in collaborative learning.

    The local working groups of researchers and teachers design one LE each. The design goes through different phases: implementation, review and refinement. The aim of this article is to describe these phases, for the Swedish LE. The Swedish group chose socio-scientific issues in the content area of Astrobiology. Astrobiology captures questions that have been found to be of interest to students (Sjøberg & Schreiner, 2006). The socio-scientific driving questions are:

    Should we look for, and try to contact, extraterrestrial life?

    Should we transform Mars into a planet where humans can live in the future?

    Students are expected to: a) demonstrate a basic understanding of essential concepts of astrobiology, b) discuss the nature of science, c) link hands-on lab-work to astrobiology research, d) provide evidence-based answers to the driving questions, using scientific, social, economical and ethical perspectives.

    Based on the evaluation of the pilot enactment several changes were made in Stochasmos and to the teachers’ guide. Even though Stochasmos gives the work structure, through tabs and templates the need for a scaffolding teacher was obvious. The teacher needs to be familiar and knowledgeable about the content in order to be able to produce challenging questions. A stricter planning for the teacher, with explicit instruction about student activities was introduced to promote science oriented discussions. The students liked working with the computer – it is a familiar environment. The teacher experienced an increase in student anticipation and focus. The analysis of the second enactment is ongoing, and will be presented at the conference.

    Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. The Journal of the Learning Sciences, 13(1), 1-14.

    Kyza, E. A. & Constantinou, C. P. (2007). Stochasmos: A web-based platform for reflective, in-quiry-based teaching and learning. Cyprus: Learning in Science Group.

    Redfors, A., Hansson, L. & Rosberg, M. (2009). Socio-Scientific Collaborative Inquiry in astro-biology – The Design and Implementation of a digital learning environment. Esera 2009.

    Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: a critical review of re-search. Journal of Research in Science Teaching, 41(5), 513-536.

    Sjøberg, S., & Schreiner, C. (2006). How do learners in different cultures relate to science and technology? Results and perspectives from the project rose (the relevance of science education). Asia-Pacific Forum on Science Learning and Teaching, 6(2), 1-17.

  • 103.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Hansson, Lena
    Högskolan Kristianstad, Sektionen för lärande och miljö. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Rosberg, Maria
    Högskolan Kristianstad, Sektionen för lärande och miljö. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Web-based Collaborative Teaching of Astrobiology in the EU-project – CoReflect2010Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Groups in Cyprus, Israel, Germany, The Netherlands, Greece, England and Sweden have developed, implemented and evaluated teaching sequences using the web-based platform STOCHASMOS in a EU-project – www.coreflect.org. The interactive web-based inquiry materials support collaborative and reflective work. The sequences have been tested as pilot projects and revised for a second local implementation. They will be culturally adopted for a third enactment in a partner country.

     

    The Swedish learning environment is Astrobiology for secondary students (9th grade, 16 years). Scientific, social, economical and ethical perspectives are taken on the driving question: Should we look for, and try to contact, extraterrestrial life?

     

    Empirical data from the final enactment, including students’ worldviews and their use of scientific arguments, will be discussed at the conference. Preliminary results from the pilot show that students appreciate the teaching, and we see an increase in students’ motivation.

  • 104.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Hansson, Lena
    Högskolan Kristianstad, Sektionen för lärande och miljö. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Rosberg, Maria
    Högskolan Kristianstad, Sektionen för lärande och miljö. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Lundh, Ingrid
    Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA). Högskolan Kristianstad, Sektionen för lärande och miljö.
    Using STOCHASMOS to scaffold students in discussing key issues while retaining ownership of their learning processes.2010Inngår i: In the Symposium: The Educative and Scalable Functions of Authoring Tools to Support Inquiry-based Science Learning. / [ed] Asher, Itay, 2010Konferansepaper (Fagfellevurdert)
  • 105.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA). Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap.
    Holgersson, Ingemar
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap.
    On teacher students and models in physics2005Konferansepaper (Fagfellevurdert)
  • 106.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap.
    Holgersson, Ingemar
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap.
    Student teachers explanations of everyday phenomena and use of models in physics2006Konferansepaper (Fagfellevurdert)
  • 107.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Holgersson, Ingemar
    Högskolan Kristianstad, Institutionen för matematik och naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Student teachers’ use of models of matter: a progress report2005Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Empirical data on student teachers' use and views of models in physics are investigated. Students’ explanations of phenomena are analysed with the link between model/theory and reality in focus. A secondary focus is how the students’ use of explanatory models is influenced by their views about the nature of scientific knowledge. The project has a combined cross sectional and longitudinal design. Written questionnaires are used, in combination with follow up interviews. Three different phenomena are discussed, a burning candle, a gas flame and a flask with air confined by a balloon. Data is analysed with respect to a theoretical model of learning assuming that students use several different explanatory models, and that they use more than one in explanations of everyday phenomena. Results from this exploratory study are planned to guide further research on how teaching can build upon different perspectives of models to improve student learning.

  • 108.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap.
    Holgersson, Ingemar
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap.
    Student teachers use of models when explaining everyday phenomena in physics2006Konferansepaper (Fagfellevurdert)
  • 109.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap.
    Holgersson, Ingemar
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap.
    Niedderer, Hans
    Tyskland.
    On teacher students and the world of models in physics2003Konferansepaper (Fagfellevurdert)
  • 110.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Johansson, Sveneric G.
    Lund University.
    The Fe II excitation mechanism in KQ Puppis2000Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 364, nr 2, s. 646-654Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We discuss different excitation processes behind the Fe II emission lines in the IUE spectrum of KQ Puppis (Boss 1985), a VV Cephei type of spectroscopic binary. Several pa pers have been published on the subject suggesting a number of processes behind the strong Fe II emission lines. We propose that there are two processes operating: selective photoexcitation by continuum radiation (PCR) from the B-star companion, and photoexcitation by accidental resonance (PAR) by the H Ly alpha radiation field. We suggest excitation channels for each of the Fe II emission lines identified in the spectrum.

  • 111.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö.
    Niedderer, Hans
    University of Bremen, Germany.
    Cognitive Development in a Learning Process about Electric Circuits2004Inngår i: Naturfagenes didaktikk – en disiplin i forandring?: Det 7. nordiske forskersymposiet om undervisning i naturfag i skolen / [ed] E.K. Henriksen and M. Ødegaard, Kristiansand: Høyskoleforlaget, 2004, s. 399-413Konferansepaper (Fagfellevurdert)
  • 112.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap.
    Niedderer, Hans
    Tyskland.
    On the use of cognitive layers in describing a learning process about electric circuits2002Konferansepaper (Fagfellevurdert)
  • 113.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Fakulteten för lärarutbildning, Forskningsmiljön Learning in Science and Mathematics (LISMA). Högskolan Kristianstad, Fakulteten för lärarutbildning, Avdelningen för matematik- och naturvetenskapernas didaktik.
    Ryder, Jim
    University of Leeds.
    Introduction: Section 102018Inngår i: Research, practice and collaboration in science education / [ed] Finlayson, O., McLoughlin, E., Erduran, S., & Childs, P., Dublin: Dublin City University , 2018, s. 1322-1324Kapittel i bok, del av antologi (Annet vitenskapelig)
  • 114.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Ryder, Jim
    England.
    Introduction to Strand 10: science curriculum and educational policy2015Inngår i: Science education research: engaging learners for a sustainable future / [ed] J. Lavonen, K. Juuti, J. Lampiselkä, A. Uitto & K. Hahl, University of Helsinki, 2015, s. 1442-1444Kapittel i bok, del av antologi (Fagfellevurdert)
  • 115.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Ryder, Jim
    University of Leeds.
    University physics students' explanations of phenomena involving interaction between matter and radiation1999Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This project discusses university physics students’ use of models when explaining phenomena involving interaction between matter and electromagnetic radiation. This is a content area which is heavily modelled and appropriate explanations for the chosen phenomena draw upon a number of different models. University physics students are familiar with the phenomena, but they are not generally used as exemplars of scientific models within undergraduate physics education. The data for this study, which is collected during the beginning of 1999, comes from written surveys and interviews. The sample is third year university physics students at different universities in UK and Sweden. Both surveys and interviews have been through a piloting phase.

  • 116.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö.
    Ryder, Jim
    Storbritannien.
    University physics students' explanations of sunlight2001Inngår i: Physics teacher education beyond 2000: selected contributions, Paris: Elsevier, 2001Konferansepaper (Fagfellevurdert)
  • 117.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Ryder, Jim
    University of Leeds.
    University physics students' use of models in explanations of phenomena involving interaction between metals and radiation2001Inngår i: International Journal of Science Education, ISSN 0950-0693, E-ISSN 1464-5289, Vol. 23, nr 12, s. 1283-1301Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We examine third year university physics students' use of models when explaining familiar phenomena involving interaction between metals and electromagnetic radiation. A range of scientific models are available to explain these phenomena. However, explanations of these phenomena tend not to be used as exemplars of scientific models within undergraduate physics education. The student sample is drawn from six universities in UK and Sweden. These students have difficulties in providing appropriate explanations for the phenomena. Many students draw upon the Bohr model of isolated atoms when explaining light emission of metals. The students tend not to recognize that atoms in metals interact to give an electronic structure very different from that of the isolated atom. Few students use a single model consistently in their explanations of these related phenomena. Rather, students' use of models is sensitive to the context in which each phenomenon is presented to them.

  • 118.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Thulin, Susanne
    Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA). Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Pedagogik.
    Science in Early Childhood Education – Student teachers’ experiences2016Inngår i: Abstract Book, 2016Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Develop knowledge about different ways students experience Science in preschool, before and after a onesemestercourse with science content in preschool teacher education. The current national curriculum entails179discussions about pedagogical consequences for preschool and preschool teacher education. Aims for emergentscience, children as 'beings' or 'becomings' (Qvortrup et al. 1994, Eshach, 2006, Fleer, 2013), and teachercompetencies need to be problematized (Roychoudhury, 2012, Sundberg & Ottander, 2013). The theoreticalframework is based on phenomenography focusing on developmental pedagogy (Marton & Booth, 1997,Pramling Samuelsson & Asplund Carlsson, 2008). A questionnaire has been distributed (pre/post) a courseincluding science and practice teaching, in preschool teacher education. A phenomenographic analysis of 107student responses revealing qualitatively different ways of experiencing is analysed for individual shifts. Theresearch adheres to the ethical guidelines of the Swedish Research Council. All participants are informed andagree to voluntary and anonymous participation with right to abandon participation. Many students saw scienceas biology/nature and several did not adjust even though chemistry and physics were taught. Few students werenegative towards science, none after the course. Most students described what and why perspectives, but fewdeveloped a synthesised view. Both teacher and child centred perspectives were used, use of a compositeperspective increased in the post-test. The importance of establishing, and explicitly addressing, studentteachers' experiences of science, and traditions of early childhood education. An inclusive discussion ofpreschool teachers' experiences and the benefits of connecting science teaching in pre-service education torealities in preschools.

  • 119.
    Redfors, Andreas
    et al.
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Thulin, Susanne
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Pedagogik. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    The role of science in Swedish pre-schools: student teachers’ attitudes and teaching experiences2014Konferansepaper (Fagfellevurdert)
    Abstract [en]

    To investigate how students view the role of science in Swedish pre-schools before and after a semester in pre-service teacher education. A renewed curriculum entails discussions about pedagogical consequences for preschool and pre-school teacher education. Aims for emergent science, children as “being” or “becoming” (Eshach, 2006, Fleer, 2013), practices and teacher competencies need to be problematised. The theoretical framework is based on phenomenography focusing on developmental pedagogy (Marton & Booth, 1997, Pramling Samuelsson & Asplund Carlsson, 2008). A written questionnaire has been piloted and distributed (pre and post) a semester, including science and practice teaching, in pre-service teacher education. A double blind comparative analysis of 107 students aiming to reveal qualitatively different ways of experiencing is presented. The research adheres to the ethical guidelines of the Swedish Research Council. All participants are informed and agree to voluntary and anonymous participation with a right to abandon participation. Preliminary findings show that many students saw science as biology/nature and several did not adjust even though chemistry and physics was taught. Few students were negative towards science - none after the course. Most students described what and why perspectives, but few developed a synthesised view. Both teacher and child centred perspectives were used, and the fraction of the aimed for composite perspectives increased. Explicit aims and appropriate science content in pre-service teacher education are important. Many students remain hesitantly positive towards science, but positive towards practices with children, hence an increased focus on practicing science seems effective.

  • 120.
    Tabak, Iris, Asher, Itay, Nasser, Samira
    et al.
    Ben Gurion University of the Negev.
    Kyza, Eleni A., Nicolaidou, Iolie, Hadjichambis, Andreas, Kafouris, Dimitris, Terzian, Frederiki
    Cyprus University of Technology.
    Redfors, Andreas
    Högskolan Kristianstad, Sektionen för lärande och miljö. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Hansson, Lena
    Högskolan Kristianstad, Sektionen för lärande och miljö. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Rosberg, Maria
    Högskolan Kristianstad, Sektionen för lärande och miljö. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Oldershaw, Cally
    Association for Science Education, UK.
    Constantinou, Constantinos
    University of Cyprus.
    van der Meij, Hans
    Twente University.
    Schanze, Sascha
    Leibniz Universität Hannover.
    Kollias, Vassilis
    University of Thessaly.
    Increasing International Capacity for CSCL: CoReflect as a Case Example of the Sharing and Adapting of CSCL Environments across Europe2011Konferansepaper (Fagfellevurdert)
  • 121.
    Thulin, Susanne
    et al.
    Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA). Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Pedagogik. Högskolan Kristianstad, Forskningsmiljön Barndom, Lärande och Utbildning (BALU).
    Hellberg, Lina
    Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA). Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Pedagogik.
    Redfors, Andreas
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap. Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Backman, Anna
    Gothenburg University.
    Science communication in Early Childhood Education: examples from Swedish preschools2017Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Preschool in Sweden is a voluntary school form entailing education and play. A national curriculum with learning goals regulates educational activities, and prescribes covering science. This mission affects practices, teachers' knowledge, and competences. Didactical approaches, in relation to children's learning are on the agenda. We will discuss and problematize teaching of science based on three research reports. The research adheres to the ethical guidelines of the Swedish Research Council.

    (1) Science communication – children and teachers

    Firstly we report from a design-based research project where viable science practices were developed and implemented with a focus on communication. Collected video data was analysed based on phenomenography and developmental pedagogy. Analysis of teachers’ planning of consecutive activities with children focusing the intended object of learning (forces and motion) is presented. The importance of content,  educational knowledge, and teachers' experiences of their mission is discussed.

    (2) Science communication – children and tablets

    Secondly we report on a study of the potential of tablets as scaffolds in collaborative inquiry-based science learning in preschools. Specifically, we have investigated the role of Time-lapse photography and Slowmation production in scaffolding communication and learning. The theoretical framework is phenomenography  and developmental pedagogy. Video and qualitative data measures were collected. The potential of teachers, children and researchers jointly developing, enacting and evaluating learning processes supported by tablets in preschool is discussed.

    (3) Science communication – booktalks about shadows

    Thirdly we report on a study about opportunities for children in preschool to discern the physical phenomenon ‘shadow’ in conversations from various children's books. The theoretical framework is variation theory with phenomenography as an analysing method. Research results based on children´s perspective will be discussed in order to show how children perceived shadow, when talking about literature that contains fiction, visual art as well as scientific illustrations. 

  • 122.
    Thulin, Susanne
    et al.
    Högskolan Kristianstad, Forskningsmiljön Learning in Science and Mathematics (LISMA). Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Pedagogik.
    Redfors, Andreas
    Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Naturvetenskap.
    Student preschool teachers' experiences of science and its role in preschool2017Inngår i: Early Childhood Education Journal, ISSN 1082-3301, E-ISSN 1573-1707, Vol. 45, nr 4, s. 509-520Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This article reports on student preschool teachers’ views of science and its role in preschool. Three cohorts of students have been given a written questionnaire with open-ended questions before and after a one-semester course including science (specifically Chemistry and Physics) in a 3.5-year preschool teacher programme in Sweden. The science content in the course is integrated with other subjects and lecturers with different subject backgrounds work together in forming an integrated and meaningful context. A phenomenographic qualitative analysis of responses to the questionnaires before and after the course is presented. The analysis gave that many students equate science with biology (nature studies), and several did not adjust this view even though chemistry and physics were explicitly taught. Surprisingly few students were negative towards science, none after the course. However, several remain hesitantly positive. Most students described ‘what’ and ‘how’ perspectives of science, but few developed a synthesised view of science activities. However, there was a shift towards a more integrated perspective after the course. Also the quality and eloquence of the students’ response were noticeably improved in responses given after the course. Prior expectations and implications of the results for preschool teacher education are discussed.

123 101 - 122 of 122
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf