hkr.sePublikasjoner
Endre søk
Begrens søket
1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Nardi, Paolo
    Högskolan Kristianstad, Fakulteten för naturvetenskap.
    Human Activity Recognition: Deep learning techniques for an upper body exercise classification system2019Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
    Abstract [en]

    Most research behind the use of Machine Learning models in the field of Human Activity Recognition focuses mainly on the classification of daily human activities and aerobic exercises. In this study, we focus on the use of 1 accelerometer and 2 gyroscope sensors to build a Deep Learning classifier to recognise 5 different strength exercises, as well as a null class. The strength exercises tested in this research are as followed: Bench press, bent row, deadlift, lateral rises and overhead press. The null class contains recordings of daily activities, such as sitting or walking around the house. The model used in this paper consists on the creation of consecutive overlapping fixed length sliding windows for each exercise, which are processed separately and act as the input for a Deep Convolutional Neural Network. In this study we compare different sliding windows lengths and overlap percentages (step sizes) to obtain the optimal window length and overlap percentage combination. Furthermore, we explore the accuracy results between 1D and 2D Convolutional Neural Networks. Cross validation is also used to check the overall accuracy of the classifiers, where the database used in this paper contains 5 exercises performed by 3 different users and a null class. Overall the models were found to perform accurately for window’s with length of 0.5 seconds or greater and provided a solid foundation to move forward in the creation of a more robust fully integrated model that can recognize a wider variety of exercises.

    Fulltekst (pdf)
    fulltext
1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf