Various alternative models were used to describe the structure of 106Ru . For example, the General Collective Model (GCM) predicts shape-coexistence for 106Ru with a spherical and a triaxial minimum and strongly mixed structures, while in the IBA-2 calculations, where 106Ru was considered as transitional from vibrational U(5) to γ -soft O(6) , no need was found to include the shape-coexisting configurations. In order to provide additional constraints on the model interpretations, we have applied the Advanced Time-Delayed (ATD) βγγ(t) method to measure the level lifetimes of the excited levels in 106Ru . The new results include the half-lives of T 1/2 = 183(3) ps and 7.5(30)ps for the 2+ 1 and 2+ 2 states, respectively.