hkr.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Pöysä, Hannu
    et al.
    Finland.
    Holopainen, Sari
    Finland.
    Elmberg, Johan
    Kristianstad University, Faculty of Natural Science, Research environment Man & Biosphere Health (MABH). Kristianstad University, Faculty of Natural Science, Avdelningen för miljö- och biovetenskap.
    Gunnarsson, Gunnar
    Kristianstad University, Faculty of Natural Science, Research environment Man & Biosphere Health (MABH). Kristianstad University, Faculty of Natural Science, Avdelningen för miljö- och biovetenskap.
    Nummi, Petri
    Finland.
    Sjöberg, Kjell
    Swedish University of Agricultural Sciences.
    Changes in species richness and composition of boreal waterbird communities: a comparison between two time periods 25 years apart2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, no 1Article in journal (Refereed)
    Abstract [en]

    Global measures of biodiversity indicate consistent decline, but trends reported for local communitiesare more varied. Therefore, we need better understanding of mechanisms that drive changes in diversity of local communities and of differences in temporal trends between components of local diversity, such as species richness and species turnover rate. Freshwater ecosystems are vulnerable to multiple stressors, and severe impacts on their biodiversity have been documented. We studied species richness and composition of local boreal waterbird communities in 1990/1991 and 2016 at 58 lakes distributed over six regions in Finland and Sweden. The study lakes represented not only local trophic gradients but also a latitudinal gradient in the boreal biome. While species richness tended to be lower in 2016 than in 1990/1991, species turnover was relatively high. Within foraging guilds, local species richness of diving ducks and surface feeding waterbirds decreased, whereas that of large herbivores increased. The number of species gained in local communities was higher in lakes with rich vegetation than in lakes with sparse vegetation. Conservation of boreal freshwater ecosystems would benefit from recognizing  hat large-scale environmental changes can affect local diversity via processes operating atfiner scales.

  • 2.
    Sanagavarapu, Kalyani
    et al.
    Lund University.
    Nüske, Elisabeth
    Germany.
    Nasir, Irem
    USA.
    Meisl, Georg
    England.
    Immink, Jasper N
    Lund University.
    Sormanni, Pietro
    England.
    Vendruscolo, Michele
    England.
    Knowles, Tuomas P J
    England.
    Malmendal, Anders
    Lund University.
    Cabaleiro-Lago, Celia
    Kristianstad University, Faculty of Natural Science, Avdelningen för miljö- och biovetenskap. Kristianstad University, Faculty of Natural Science, Research environment Man & Biosphere Health (MABH). Lund University.
    Linse, Sara
    Lund University.
    A method of predicting the in vitro fibril formation propensity of Aβ40 mutants based on their inclusion body levels in E. coli2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, no 1Article in journal (Refereed)
    Abstract [en]

    Overexpression of recombinant proteins in bacteria may lead to their aggregation and deposition in inclusion bodies. Since the conformational properties of proteins in inclusion bodies exhibit many of the characteristics typical of amyloid fibrils. Based on these findings, we hypothesize that the rate at which proteins form amyloid fibrils may be predicted from their propensity to form inclusion bodies. To establish a method based on this concept, we first measured by SDS-PAGE and confocal microscopy the level of inclusion bodies in E. coli cells overexpressing the 40-residue amyloid-beta peptide, Aβ40, wild-type and 24 charge mutants. We then compared these results with a number of existing computational aggregation propensity predictors as well as the rates of aggregation measured in vitro for selected mutants. Our results show a strong correlation between the level of inclusion body formation and aggregation propensity, thus demonstrating the power of this approach and its value in identifying factors modulating aggregation kinetics.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf