hkr.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Wang, Qinghua
    et al.
    Kristianstad University, School of Health and Society, Avdelningen för Design och datavetenskap.
    Yigitler, Huseyin
    Finland.
    Huang, Xin
    Kina.
    Jäntti, Riku
    Finland.
    Localizing multiple objects using radio tomographic imaging technology2016In: IEEE Transactions on Vehicular Technology, ISSN 0018-9545, E-ISSN 1939-9359, Vol. 65, no 5, p. 3641-3656Article in journal (Refereed)
    Abstract [en]

    Low data rate wireless networks can be deployed for physical intrusion detection and localization purposes. The intrusion of a physical object (or human) will disrupt the radio frequency magnetic field, and can be detected by observing the change of radio attenuation. This gives the basis for the radio tomographic imaging technology which has been recently developed for passively monitoring and tracking objects. Due to noise and the lack of knowledge about the number and the sizes of intruding objects, multi-object intrusion detection and localization is a challenging issue. This article proposes an extended VB-GMM (i.e. variational Bayesian Gaussian mixture model) algorithm in treating this problem. The extended VBGMM algorithm applies a Gaussian mixture model to model the changed radio attenuation in a monitored field due to the intrusion of an unknown number of objects, and uses a modified version of the variational Bayesian approach for model estimation. Real world data from both outdoor and indoor experiments (using the radio tomographic imaging technology) have been used to verify the high accuracy and the robustness of the proposed multi-object localization algorithm.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf