hkr.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Håkansson, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Mat- och måltidsvetenskap. Kristianstad University, Research Environment Food and Meals in Everyday Life (MEAL).
    Scale-down failed: dissimilarities between high-pressure-homogenizers of different scales due to failed mechanistic matching2017In: Journal of Food Engineering, ISSN 0260-8774, E-ISSN 1873-5770, Vol. 195, p. 31-39Article in journal (Refereed)
    Abstract [en]

    The high-pressure homogenizer (HPH) is used extensively in the processing of non-solid foods. Food researchers and producers use HPHs of different scales, from laboratory-scale (∼10 L/h) to the largest production-scale machines (∼50 000 L/h). Hence, the process design and interpretation of academic findings regarding industrial condition requires an understanding of differences between scales. This contribution uses theoretical calculations to compare the hydrodynamics of the different scales and interpret differences in the mechanism of drop-breakup.

    Results indicate substantial differences between HPHs of different scales. The laboratory-scale HPH operates in the laminar regime whereas the production-scale is in the fully turbulent regime. The smaller scale machines are also less prone to cavitation and differ in their pressure profiles. This suggest that the HPHs of different scales should be seen as principally different emulsification processes. Conclusions on the effect or functionality of a HPH can therefore not readily be translate between scales.

  • 2.
    Håkansson, Andreas
    et al.
    Kristianstad University, Research Environment Food and Meals in Everyday Life (MEAL). Kristianstad University, School of Education and Environment, Avdelningen för Mat- och måltidsvetenskap.
    Zishan, Chaudhry
    Tetra Pak Processing Systems AB.
    Fredrik, Innings
    Tetra Pak Processing Systems AB.
    Model emulsions to study the mechanism of industrial mayonnaise emulsification2016In: Food and Bioproducts Processing, ISSN 0960-3085, E-ISSN 1744-3571, Vol. 98, p. 189-195Article in journal (Refereed)
    Abstract [en]

    Mechanistic understanding of industrial food-emulsification is necessary for optimal operation and design. Industrial mayonnaise production is yet poorly understood, partly due to a lack of experimental data and partly due to the complexity of the product.

    This study suggests a systematic method for building mechanistic insight, by investigating successively more complex model emulsions in industrial rotor–stator mixers, comparing to idealized theories identifying points of departure. As a first step, a high volume fraction (>50%) and high viscosity (>100 mPa s) model emulsion with a non-ionic surfactant acting as emulsifier is investigated in two industrial-scale mixers (one batch and one continuous inline mixer) at varying rotor tip-speeds.

    The resulting drop diameter to rotor tip-speed scaling suggest turbulent viscous fragmentation of the model emulsion in both mixers despite the high volume fraction of disperse phase which could be expected to lead to significant non-idealities such as extensive coalescence and concentration effect-dominated fragmentation. If the other non-idealities (e.g. egg yolk emulsifying system and non-Newtonian rheology) would not influence the emulsification, this suggests the same mechanism for mayonnaise emulsification. An outline for continued work on successively more complex model-emulsions is discussed in order to further enhance understanding.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf