Manganese, Mn, is a naturally abundant metal in marine sediments. During hypoxic conditions the metal converts into a bioavailable state and can reach levels that have been shown immunotoxic to the crustacean Nephrops norvegicus. For this species it has previously been shown that exposure to 15 mg L(-1) of Mn decreased the number of circulating haemocytes while it for the echinoderm Asterias rubens increased the number of coelomocytes. Here, we compared if five days of exposure to the same concentration of Mn affects the bactericidal capacity of these two species and the mollusc Mytilus edulis when inoculated with the bacterium Vibrio parahaemolyticus. Viable counts of the bacteria were investigated at a time-course post-injection in the blood and the digestive glands of Mn-exposed and un-exposed (controls) animals. Accumulation of Mn was also analyzed in these tissues. When exposed to Mn the haemocyte numbers were significantly reduced in M. edulis and it was shown that the bactericidal capacity was impaired in the mussels as well as in N. norvegicus. This was most obvious in the digestive glands. These two species also showed the highest accumulation of the metal. In A. rubens the bactericidal capacity was not affected and the metal concentration was similar to the exposure concentration. After a recovery period of three days the concentration of Mn was significantly reduced in all three species. However, in M. edulis and N. norvegicus it was still double that of A. rubens which could explain the remaining bactericidal suppression observed in N. norvegicus. This study pointed out that exposure to such Mn-levels that are realistic to find in nature could have effects on the whole organism level, in terms of susceptibility to infections. The effect seemed associated to the accumulated concentration of Mn which differed on species level.