hkr.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The effect of stator design on flowrate and velocity fields in a rotor-stator mixer: an experimental investigation
Tetra Pak Processing Systems AB.
Tetra Pak Processing Systems AB & Lund University.
Kristianstad University, Research Environment Food and Meals in Everyday Life (MEAL). Kristianstad University, School of Education and Environment, Avdelningen för Mat- och måltidsvetenskap.ORCID iD: 0000-0002-0002-661X
2017 (English)Article in journal (Refereed) Epub ahead of print
Abstract [en]

Rotor-stator mixers (RSMs) are available in different designs, e.g. with different number of stator slots and slot dimensions. However, the relationship between stator design and the RSM hydrodynamics is not well understood. Consequently, manufacturers still base design and stator screen recommendations on trial-and-error.

This study reports experimental measurements of how the flowrate through the stator slots, and velocity profiles in the region of relevance for mixing and breakup, is influenced by the stator slot width, using particle image velocimetry. It is concluded that the flowrate can be described by a design dependent flow number for all investigated geometries and that the flow number decreases with increasing slot width. Moreover, by studying the velocity profiles at different rotor speeds and designs, it is concluded that the velocity profile, its skewness and the proportion of back-flow (fluid re-entering the slot) scales with the flow number of the design. This suggests that the flow number, in addition to rotor speed, is a highly relevant parameter for describing the effect of design on batch RSM hydrodynamics.

Place, publisher, year, edition, pages
2017.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:hkr:diva-16613DOI: 10.1016/j.cherd.2017.03.016OAI: oai:DiVA.org:hkr-16613DiVA: diva2:1085127
Available from: 2017-03-28 Created: 2017-03-28 Last updated: 2017-03-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Håkansson, Andreas
By organisation
Research Environment Food and Meals in Everyday Life (MEAL)Avdelningen för Mat- och måltidsvetenskap
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf