hkr.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Localizing multiple objects using radio tomographic imaging technology
Högskolan Kristianstad, Sektionen för hälsa och samhälle, Avdelningen för Design och datavetenskap.ORCID-id: 0000-0002-8032-6291
Finland.
Kina.
Finland.
2016 (engelsk)Inngår i: IEEE Transactions on Vehicular Technology, ISSN 0018-9545, E-ISSN 1939-9359, Vol. 65, nr 5, s. 3641-3656Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Low data rate wireless networks can be deployed for physical intrusion detection and localization purposes. The intrusion of a physical object (or human) will disrupt the radio frequency magnetic field, and can be detected by observing the change of radio attenuation. This gives the basis for the radio tomographic imaging technology which has been recently developed for passively monitoring and tracking objects. Due to noise and the lack of knowledge about the number and the sizes of intruding objects, multi-object intrusion detection and localization is a challenging issue. This article proposes an extended VB-GMM (i.e. variational Bayesian Gaussian mixture model) algorithm in treating this problem. The extended VBGMM algorithm applies a Gaussian mixture model to model the changed radio attenuation in a monitored field due to the intrusion of an unknown number of objects, and uses a modified version of the variational Bayesian approach for model estimation. Real world data from both outdoor and indoor experiments (using the radio tomographic imaging technology) have been used to verify the high accuracy and the robustness of the proposed multi-object localization algorithm.

sted, utgiver, år, opplag, sider
2016. Vol. 65, nr 5, s. 3641-3656
Emneord [en]
Gaussian mixture model, multiple object localization, physical intrusion detection, radio tomographic imaging, variational Bayesian
HSV kategori
Identifikatorer
URN: urn:nbn:se:hkr:diva-14043DOI: 10.1109/TVT.2015.2432038ISI: 000376094500060OAI: oai:DiVA.org:hkr-14043DiVA, id: diva2:822160
Tilgjengelig fra: 2015-06-16 Laget: 2015-06-16 Sist oppdatert: 2017-12-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Wang, Qinghua

Søk i DiVA

Av forfatter/redaktør
Wang, Qinghua
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Vehicular Technology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 310 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf