hkr.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Generating artificial social networks
Högskolan Kristianstad, Sektionen för lärande och miljö, Avdelningen för Psykologi.ORCID-id: 0000-0002-8057-3831
2019 (Engelska)Ingår i: The Quantitative Methods for Psychology, ISSN 1017-3455, E-ISSN 1543-8740, Vol. 15, nr 2, s. 56-74Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The study of complex social networks is an inherently interdisciplinary research area with applications across many fields, including psychology. Social network models describe, illustrate and explain how people are connected to each other and can, for example, be used to study information spread and interconnectedness of people with different kinds of traits. One approach to social network modelling, originating mainly in the physics literature, is to generate targeted kinds of social networks using models with specialized mechanisms while analyzing and deriving features of the models. Surprisingly though, and despite the popularity of this approach, there is no available functionality for generating a wide variety of social networks from these models. Thus, researchers are left to implement and specify these models themselves, restricting the applicability of these models. In this article, I provide a set of Matlab functions enabling the generation of artificial social networks from 22 different network models, most of them explicitly designed to capture features of social networks. Many of these models originate in the physics literature and may therefore not be familiar to psychological researchers. I also provide an illustration of how these models can be evaluated in terms of a simulated model comparison approach and how they can be applied to psychological research. With the already existing network functionality available in Matlab and other languages, this should provide a useful extension to researchers.

Ort, förlag, år, upplaga, sidor
2019. Vol. 15, nr 2, s. 56-74
Nyckelord [en]
Social Network; Model; Psychology; Matlab; Function; Clustering; Community.
Nationell ämneskategori
Psykologi (exklusive tillämpad psykologi)
Identifikatorer
URN: urn:nbn:se:hkr:diva-16432DOI: 10.20982/tqmp.15.2.p056OAI: oai:DiVA.org:hkr-16432DiVA, id: diva2:1065198
Tillgänglig från: 2017-01-13 Skapad: 2017-01-13 Senast uppdaterad: 2019-10-07Bibliografiskt granskad

Open Access i DiVA

fulltext(391 kB)346 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 391 kBChecksumma SHA-512
ac2889d7117c65e5b0ef4a6baaad6285ec4ebe802fd3fd10df2931e1bd510d6fb73fdc3e9c0debe076edef4814c9927f8ca6a3f84ae8efcc36dddd1a0d84ca53
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Johansson, Tobias

Sök vidare i DiVA

Av författaren/redaktören
Johansson, Tobias
Av organisationen
Avdelningen för Psykologi
I samma tidskrift
The Quantitative Methods for Psychology
Psykologi (exklusive tillämpad psykologi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 346 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 193 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf