Open this publication in new window or tab >>2009 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 48, no 47, p. 11296-303Article in journal (Refereed) Published
Abstract [en]
Ribosomal release factors (RFs) catalyze the termination of protein synthesis by triggering hydrolysis of the peptidyl-tRNA ester bond in the peptidyl transferase center of the ribosome. With new medium-resolution crystallographic structures of RF-ribosome complexes available, it has become possible to examine the detailed mechanism of this process to resolve the key factors responsible for catalysis of the termination reaction. Here, we report computer simulations of the termination reaction that utilize both the new RF complex structures and information from a high-resolution complex with a P-site substrate analogue. The calculations yield a consistent reaction mechanism that reproduces experimental rates and allows us to identify key interactions responsible for the catalytic efficiency. The results are also in general agreement with an earlier model based on molecular docking. The methylated glutamine residue of the universally conserved GGQ motif plays a key role in the hydrolysis reaction by orienting the water nucleophile and by stabilizing the transition state, and its side chain makes an entropic contribution to the lowering of the activation barrier. Two additional water molecules interacting with the P-site substrate are also found to be critically important. Furthermore, the 2'-OH group of the peptidyl-tRNA substrate is predicted to act as a proton shuttle for the leaving group in analogy with the consensus mechanism for peptidyl transfer. Thus, the ribosome's ability to catalyze both the termination (hydrolysis) and peptidyl transfer (aminolysis) reactions is largely explained by this type of unified mechanism, with similar transition states occurring in both processes.
National Category
Theoretical Chemistry
Identifiers
urn:nbn:se:hkr:diva-12010 (URN)10.1021/bi9017297 (DOI)19883125 (PubMedID)
2014-05-272014-05-272020-02-04Bibliographically approved