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Abstract: Error control codes have been widely used in data communications and storage systems. One central
problem in coding theory is to optimize the parameters of a linear code and construct codes with
best possible parameters. There are tables of best-known linear codes over finite fields of sizes up to
9. Recently, there has been a growing interest in codes over F13 and other fields of size greater than
9. The main purpose of this work is to present a database of best-known linear codes over the field
F13 together with upper bounds on the minimum distances. To find good linear codes to establish
lower bounds on minimum distances, an iterative heuristic computer search algorithm is employed to
construct quasi-twisted (QT) codes over the field F13 with high minimum distances. A large number
of new linear codes have been found, improving previously best-known results. Tables of [pm,m] QT
codes over F13 with best-known minimum distances as well as a table of lower and upper bounds on
the minimum distances for linear codes of length up to 150 and dimension up to 6 are presented.
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1. Introduction and motivation

Let [n, k, d]q denote a linear code of length n, dimension k and minimum distance (weight) d over the
finite field Fq. A central and fundamental problem in coding theory is to find the optimal values of the
parameters of a linear code and construct codes with these parameters. The problem can be formulated
in a few different ways. For example, we may wish to maximize the minimum distance d for the given
block length n and dimension k; or minimize the block length n for the given dimension k and minimum
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distance. Let dq(n, k) denote the largest value of d for which there exists an [n, k, d] code over Fq, and
nq(k, d) the smallest value of n for which there exists an [n, k, d] code over Fq. An [n, k, d] code is called
optimal (or length-optimal) if its block length n equals nq(k, d), or if its minimum distance d equals
dq(n, k) (also called distance-optimal).

This optimization problem is very difficult. In general, it is only solved for the cases where either
k or n − k is small. Computers are often used in searching for codes with best parameters but there is
an inherent difficulty: computing the minimum distance of a linear code is computationally intractable
[19]. Since it is not possible to conduct exhaustive searches for linear codes if the dimension is large,
researchers often focus on promising subclasses of linear codes with rich mathematical structures. As
a generalization to cyclic and consta-cyclic codes, quasi-cyclic (QC) and quasi-twisted (QT) codes are
known to have this characteristic. They have been shown to contain many good linear codes. With
the help of modern computers, many record-breaking QC and QT codes have been constructed [2]-[13].
However, the problem still becomes intractable as the dimension and the block length of the code get
large. The records of best-known linear codes are available. For example, the online database [21] is
one that is commonly referred to. It contains records of best-known codes over Fq for q ≤ 9 together
with upper bounds on dq(n, k). The Magma software [20] also contains a similar database. The online
database of QT codes contains best-known QC and QT codes [24]. These databases are updated as new
codes are discovered.

There has been a growing interest in codes over F13 in recent years. Several papers in the literature
deal with self-dual or maximum distance separable (MDS) codes over F13 . For example, Betsumiya [25]
et al studied MDS self-dual codes over F13 of lengths up to 24 and determined largest minimum weights
of such codes for lengths up to 20. De Boer [16] constructed a self-dual [18, 9, 9] code and optimal codes
with parameters [23, 3, 20] and [23, 17, 6] over F13. Newhart [26] studied the extended quadratic residue
(QR) codes [18, 9, 9], [24, 12, 10] and [30, 15, 12] over F13. Grassl and Gulliver [28] showed non-existence
of a self-dual MDS code over F13 with parameters [12,6,7]. In [29] the authors constructed a Euclidean
self-dual near-MDS code over F13. Kotsireas et al. constructed many MDS and near-MDS self-dual codes
over F13 [27].

Another reason for the interest in codes over F13 is the connection between linear codes and finite
geometries. Codes of dimension 3 are closely related to arcs in a projective geometry, and a lot of research
has been carried out on projective codes of dimension 3 over finite fields of size up to 19 [4].

Finally, Venkaiah and Gulliver [13] used the tabu search to construct quasi-cyclic codes over F13 of
dimensions up to 6 and lengths less than 150. They constructed many QC codes of the form [pk, k], for
over F13, and presented their results in several tables (one for each value of k). These tables constitute
the most comprehensive set of best-known linear codes over F13 to date.

In this paper, we present a database of linear codes over F13 for lengths ≤ 150 and dimensions
3 ≤ k ≤ 6. We employed an iterative, heuristic algorithm [15] to conduct a computer search to produce
new codes. With this algorithm, a large number of new QC and QT codes have been constructed many of
which improve the previous results. We achieve improvements on the parameters of the codes presented
in [13] in many cases. Combining the results presented in [13] with the new codes we have found, we
create a comprehensive database of best-known linear codes over F13. To the best of our knowledge, this
is the first time such a database appears in the literature.

The remainder of the paper is organized as follows. In Section 2, some basic definitions and facts on
QT codes are presented. In Section 3, the iterative heuristic algorithm that is used to find good QT codes
is described. Next, a database of linear codes over F13 with minimum distance bounds is presented. The
paper contains several tables: tables of new, improved QC and QT codes, maximum known minimum
distances for QT [pm,m] codes, optimal QT codes, as well as a comprehensive table of lower and upper
bounds on linear codes over F13 that covers the range n ≤ 150 and 3 ≤ k ≤ 6. With these concrete
results, this work can serve as a foundation for future research on linear codes over F13 (e.g. a more
comprehensive database).
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2. Quasi-twisted codes

A linear q-ary [n, k, d] code is said to be α-consta-cyclic if there is a non-zero element α of Fq such that
for any codeword (a0, a1, . . . , an−1), a consta-cyclic shift by one position, that is (αan−1, a0, . . . , an−2),
is also a codeword [14]. Therefore, consta-cyclic codes are a generalization of cyclic codes, or a cyclic
code is an α-consta-cyclic code with α = 1. A consta-cyclic code can be defined by a single generator
polynomial. A code is said to be quasi-twisted (QT) if a consta-cyclic shift of any codeword by p positions
is still a codeword. Thus a consta-cyclic code is a QT code with p = 1, and a quasi-cyclic (QC) code is a
QT code with α = 1. The length n of a QT code is a multiple of p, i.e., n = pm for some positive integer
m.

An α-consta-cyclic matrix of order n, also called a twistulant matrix, is defined as

C =













c0 c1 c2 · · · cn−1

αcn−1 c0 c1 · · · cn−2

αcn−2 αcn−1 c0 · · · cn−3

...
...

...
...

αc1 αc2 αc3 · · · c0













(1)

Twistulant matrices are basic components in the generator matrix for a QT code. The algebra of
n× n consta-cyclic matrices over Fq is isomorphic to the algebra of the quotient ring Fq[x]/(x

n −α) if C
is mapped onto the polynomial formed by the elements of its first row, c(x) = c0 + c1x+ · · ·+ cn−1x

n−1,
with the least significant coefficient on the left. The polynomial c(x) is also called the defining polynomial
of the matrix C. A twistulant matrix is called a circulant matrix if α = 1.

The generator matrix of a QT code can be transformed into rows of twistulant matrices by a suitable
permutation of columns. Most research has been focused on 1-generator and 2-generator QT codes. The
generator matrices for 1-generator and 2-generator QT codes consist of one row of twistulant matrices
and two rows of twistulant matrices, respectively,

G =
[

G0 G1 · · · Gp−1

]

and G =

[

G1,0 G1,1 · · · G1,p

G1,0 G2,1 . . . G2,p

]

(2)

where Gj and Gij are twistulant matrices, for j = 0, 1, 2, . . . , p1 and i = 1, 2. Let gi,j(x) and gi,j(x)
be the defining polynomials for the corresponding twistulant matrices Gj and Gij . Then, the defining
polynomials (g0(x), g1(x), g2(x), · · · , gp−1(x)) and (g1,0(x), g1,1(x), g1,2(x), . . . , g1,p−1(x); g2,0(x), g2,1(x),
g2,2(x), . . . , g2,p−1(x)) define a 1-generator QT [pm, k, d] code and 2-generator QT [pm, k, d] code, where
k, the dimension of the code, is the rank of the generator matrix G. In Magma algebra system [20], the
number of generators is called the height. The parameters of all the codes presented in this paper have
been verified by Magma.

3. The search algorithm and new QT codes over F13

As a generalization to cyclic codes and consta-cyclic codes, quasi-cyclic (QC) codes and quasi-twisted
(QT) codes have been known to contain many good codes. In fact, many record-breaking linear codes
have been obtained from these classes [2]-[13].

Gulliver et al. [4, 5, 9, 13] have done much work on the computer searches for good QC and QT
codes. By eliminating the equivalent generator polynomials, and eliminating all redundant information
polynomials, an r×s weight matrix W is used in the constructions, as given below, where ck(x) is the kth
generator polynomial, ij(x) is the jth information polynomial, wjk is the Hamming weight of ij(x)ck(x)
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W =

c1(x) c2(x) · · · ck(x) · · · cs(x)

i1(x) w11 w12 · · · w1k · · · w1s

i2(x) w21 w22 · · · w2k · · · w2s

...
...

... · · ·

...
...

ij(x) wj1 wj2 · · · wjk · · · wjs

...
...

... · · ·

...
...

ir(x) wr1 wr2 · · · wrk · · · wrs

mod (xm − α), m is the size of the twistulant matrix and α is the shift constant. To construct a good
QT [pm, k] code, their algorithm selects a set of p columns among s columns such that the set of columns
maximizes the smallest row sum of the corresponding p columns. When p and s are large, it is not
possible to examine all (s, p) combinations. Gulliver’s search is initialized with an arbitrary [pm, k] code
(usually a good one) with p columns (or generator polynomials). To improve the code, a new column
is found to replace one presently in the code so that the minimum distance is increased. Later on, a
stochastic optimization called tabu search has been used to construct good QC or QT codes by Gulliver
and Östergård [9], and Daskalov et al. [10]. In a recent paper, Venkaiah and Gulliver [13] used the tabu
search to find good QC codes over F13.

On the other hand, a method to obtain a weight matrix from a consta-cyclic simplex code of composite
length was recently presented in [15]. The resulting weight matrix is cyclic, and therefore only one row is
required to be in the memory during the search. A new iterative heuristic search is also presented, and
many good QT codes have been constructed [15]. In this work, the algorithm from [15] is applied to both
the weight matrix defined by Gulliver’s method and the weight matrix derived from the consta-cyclic
simplex code as given in [15]. As a result, many good QT codes have been obtained, allowing us to
establish a database of linear codes over F13 with the range of parameters described above.

Given an r×s weight matrix W = (wij). The iterative algorithm tries to find a sequence of good QT
[im, k]q codes, i = 1, 2, . . . , t, where t < s. The basic idea of the algorithm is to extend a QT [(i−1)m, k]q
code by one more column to obtain a good QT [im, k]q code, for i = 2, 3, . . . , t. The algorithm is executed
for a specified number of iterations. The algorithm records the best codes found so far, and stores them
in files. When the algorithm stops, a summary of the codes found is presented. In the execution of the
algorithm, the selection of columns is important as it determines if good codes can be found quickly. In
order to avoid exhaustive search, we use a heuristic method to implement the selection. At each iteration,
to obtain the best possible minimum distance for a QT [im, k]q code, we select a column that results in
the largest minimum row sum (it is also the minimum distance of the constructed code). If there is more
than one column that gives the same best minimum distance, we count how many such rows that result
in the minimum row sum. We choose the column that will have the smallest number of such rows, since
it is expected that such a selection will provide a better chance to get a good QT [(i + 1)m, k]q code in
the next extension. In this way, the algorithm is greedy and heuristic. If there is more than one choice,
a column is selected at random among suitable choices. So the algorithm contains some randomization.

The effectiveness of this iterative heuristic search algorithm is evident from the fact that a large
number of new QT codes over F13 for k = 3, 4, 5, and 6 have been obtained as a result of the application
of the algorithm. The new codes improve the previously known results.

Table 1 lists the new QT codes over F13 that have larger minimum distances than the corresponding
codes given in [13]. The defining polynomials are listed with the lowest degree coefficient on the left, and
the finite field F13 elements 10, 11, 12 are denoted by A,B and C (as commonly used in a hexa-decimal
system). For example, C024A9 corresponds to the polynomial 12 + 2x2 + 4x3 + 10x4 + 9x5.

Table 2 summarizes the maximum known minimum distances for QT [pm,m] codes over F13 for p
up to 25. The authors can provide all best known QT codes for n up to 255, upon request. Most entries
in the table are from the results in [13], and the entries labeled with superscript “e” are new codes found
with the algorithm in this paper. All codes with k = 6 are constructed from the weight matrix derived
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from the consta-cyclic simplex [402234, 6, 371293] code. Since the weight matrix is cyclic, only one row of
402234/6 = 67039 elements is required to be stored in memory. This makes it easier to search for good
QT codes with k = 6 (otherwise, the weight matrix is too big to fit in the memory).

4. A database of linear codes over F13 with minimum distance

bounds

4.1. Lower bounds on minimum distance

Since there are no good, general analytical lower bounds available for the parameters of a linear code,
the lower bounds on minimum distances have been established by explicitly constructing the codes [1]. As
commented earlier, constructing good linear codes is a difficult task because finding the minimum distance
of a linear code is computationally expensive [19]. Therefore, researchers focus on certain promising
classes of codes with rich mathematical structure. The class of QT codes has been an excellent source
for producing best-known codes [2]-[13]. Constacyclic codes are a special case of QT codes. Following
the approach given in [22], we have been able to compute all constacyclic codes exhaustively for most
lengths since the dimension is restricted to 3 ≤ k ≤ 6. Some of the best-known (or optimal) codes are
constacyclic.

Another tool that can be used to obtain more new codes from existing codes in a computationally
efficient way is to apply standard construction methods to derive codes from known codes, such as
puncturing, shortening and extending [1]. With the codes constructed in [13], the new QT codes over F13

presented in the previous section, as well as the standard construction methods to derive new codes from
existing codes, we are able to create a comprehensive table of lower bounds on the minimum distances
for linear codes over F13 with dimensions between 3 and 6 and block length n up to 255. Table 3 includes
the lower bounds for block lengths up to 150.

There is a connection between best-known linear codes and projective geometry. An (n, r)-arc in
PG(k − 1, q) is a set of n points K with the property that every hyperplane is incident with at most r
points of K and there is some hyperplane incident with exactly r points of K. It is known that there
exists a projective [n, 3, d]q code if and only if there exists an (n, n − d)-arc in PG(2, q) [13]. Ball [17]
maintains an online table of bounds on the sizes of (n, r)-arcs in PG(2, q) for q ≤ 19 . From that table,
one can obtain lower bounds on the minimum distances of linear codes of dimension 3. Some of the
entries in Table 3 for k = 3 can be derived from [17].

Table 4 lists the defining polynomials for the new codes found in this paper and that are used to
establish the lower bounds in Table 3. There are 7 new 2-generator QT codes with k = 6 and m = 3 that
are used to derive the lower bounds in Table 3.

5. Upper bounds on minimum distance

We also determined upper bounds on the minimum distances by applying the standard bounds (such
as Griesmer, Elias, Sphere Packing etc.) [1] and taking the best result for each parameter set. In the range
of parameters considered here, Griesmer bound turned out to be the best for most of the cases except
that in some cases the Levenshtein bound performed better. When a code whose minimum distance
equals to the upper bound, an optimal code is constructed and there is no room for improvement in the
table. When there is a gap between the minimum distance of a best-known code and the upper bound
on the minimum distance, this is indicated in the table by listing the both values. For example, for a
[51,4]-code, the minimum distance of a best-known code is 43 whereas the theoretical upper bound is 45.
It is worth noting that the theoretical upper bound may be unattainable. To save the space, only entries
for the block length n up to 150 are given below (Table 3). Interested readers can obtain the full table
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from the authors.

5.1. Linear codes with dimension 3

Suppose d ≤ qk−1 and that C is an [n, k, d] code over Fq which attains the Griesmer bound. Then
C is projective [13]. Therefore, from the Ball’s table, we conclude that there do not exist codes with the
following parameters over F13: [15, 3, 13], [24, 3, 21], [25, 3, 22], [26, 3, 23], [27, 3, 24], [28, 3, 25], [29,
3, 26], [41, 3, 37], [42, 3, 38], [43, 3, 39], [54, 3, 49], [55, 3, 50], [56, 3, 51], [57, 3, 52], [70, 3, 64], [71, 3,
65], [80, 3, 73], [81, 3, 74], [82, 3, 75], [83, 3, 76], [84, 3, 77], [85, 3, 78], [93, 3, 85], [94, 3, 86], [95, 3, 87],
[96, 3, 88], [97, 3, 89], [98, 3, 90], [99, 3, 91], [106, 3, 97], [107, 3, 98], [108, 3, 99], [109, 3, 100], [110, 3,
101], [111, 3, 102], [112, 3, 103], [113, 3, 104], [120, 3, 110], [121, 3, 111], [122, 3, 112], [123, 3, 113], [124,
3, 114], [125, 3, 115], [126, 3, 116], [127, 3, 117], [134, 3, 123], [135, 3, 124], [136, 3, 125], [137, 3, 126],
[138,3 , 127], [139, 3, 128], [140, 3, 129], [141, 3, 130], [148, 3, 136], [149, 3, 137], and [150, 3, 138].

5.2. Some optimal codes over F13

Table 3 presents the lower and upper bounds on d13(n, k) for k up to 6. Many bounds are attained.
It is possible that some of the current upper bounds may be improved and more codes may turn out to
be optimal. In the rest of this section, we give more details on the optimal codes in Table 3.

With the algorithm given in the last section, many QC codes with k = 3 have been constructed
whose minimum distances meet the Griesmer bounds, and thus are optimal. Table 5 lists those optimal
QC [pm, 3] codes that do not appear in [13]. It should be noted that codes with these parameters were not
constructed in the QC form [17, 23]. Codes constructed in QC or QT form have advantages in practical
implementation. Table 6 lists optimal QT [pm, k] codes for k = 4, 5 and 6, over F13, and their defining
polynomials. With the upper bounds given in Table 3, we now know that the QC [20, 4, 16] and [28,
4, 23] codes constructed in [13] are optimal, since they reach the upper bounds. The optimal [153, 4,
139] code is included here, since two other optimal codes are obtained from it by puncturing: [150, 4,
136] and [149, 4, 135] codes. The optimal [15, 6, 9] code given in the table is a 2-generator QT code
with shift constant 6, and is constructed with the method given in [15]. With these codes, and results on
(n, r)-arcs, the exact values on d13(n, k) in Table 3 are established.

6. Conclusion

In this paper, we present the construction of a large number of new QT codes over F13 obtained by
an iterative heuristic search algorithm recently introduced. The results are presented in several tables.
Combining the new results with earlier work on linear codes over F13, a database of linear codes over F13

with both lower and upper bounds on the minimum distances is presented for the first time. We hope
that the results presented in this paper serve as a basis for future study on codes over F13.
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Table 1 New QC and QT codes over F13 

  Code m α Defining polynomials 

[63, 3, 57] 3 1 531, 51, 61, C11, B31, 21, A31, 321, 211, 341, 641, C31, B11, 611, 91, 921, C1, 261, 241, 311, 651  

[40, 4, 34] 5 1 C1, 7B71, 7B611, 2911, A9511, 3B921, BC21, 69731 

[48, 4, 41] 4 6 C55B, 529B, B301, 0AC5, A418, 4CA2, 1A21, 0995, 1625, 1C21, 93B1, 7A9C 

[60, 4, 52] 4 6 C55B, 9578, 9997, 2586, A9C3, 4254, 6A96, A3A3, B0B4, B501, A61B, 45B3, 7255, 5C97, 2C3C 

[68, 4, 60] 17 6 C9566572B03055915, 663CC4022720508C5, 8680977C590521B4A, 972A15A2473369C09 

[68, 4, 59] 4 1 38A, 1B8, 191, B873, 6AA1, 6C4, 103, BA11, 417, 468B, 6521, 315, 6712, 7133, 6691, 422A, 9631 

[72, 4, 63] 4 1 [68, 4,59] code,  6171 

[76, 4, 67] 4 2 9012, BB74, 3631, 849, A98, 7C26, C8CA, 6C74, 7BA1, 661, C219, 4148, 1C37, BB21, 7A, 2489, 5797, C668, A751 

[80, 4, 71]  4 2 [76, 4, 67] code, 28 

[88, 4, 77] 4 1 681, 6B21, 2C21, 2711, A51, 3421, 4B41, A621, 2851, 6A71, 4A11, C431, 2B21, A91, 361, 451, 6211, 3B41, 51, C11, 6B1, 7121 

[92, 4, 81] 4 6 C55B, 732A, 614, B965, 290C, BA84, 9113, 8251, 42C3, C71A, 7B64, C3A4, C867,2A73, C081, 1C88, AACB, 95A8, ABBA, A61B, 

0549, 0837, 887B 

[100, 4, 88]  4 1 691, 211, 581, 5281, A81, A11, 3231, 231, 8B31, 8531, 4941, 6531, 4621, A831, 4961, C411, 4A11, 2711, 5831, C111, 5721, 8321, 

8911, C431, A51 

[40, 5, 32] 5 1 8351, 6721, C1511, 83731, 5191, CA821, B3C31, 7A411 

[75, 5, 63] 5 1 C841, 8611, A7521, 93211, AC81, 74B1, 2C411, 4B571, CA831, 48161, 9A721, B451, 4A131, 69A1, 38711 

[85, 5, 72] 5 1 81C21, 41931, 47521, 98711, BAB41, 54721, 71611, A621, 471, C6A1, 69A21, B7C21, 7CC1, 3C81, A8111, BC821, 56131 

[95, 5, 81] 5 1 B9261, 61811, 9751, C9C11, A3C21, 5811, C2641, 64C11, C251, 93C1, 89C1, C1A11, B3761, 61831, 1231, 601, 28B41, 8611, 

BCB21  

[100, 5, 85] 5 1 B191, A291, B631, A8C1, 41611, 81711, 27B1, 7801, 3331, B361, CB521, 43261, BC921, 53641, CBB1, 69611, 32311, 35731, 

65261, 3201 

[105, 5, 90] 5 1 48911, A1211, 6A71, 24621, 17A1, 63921, CAC21, 6A651, 3B241, CA21, 37511, 46941, 1B91, 9C121, C2741, ABA1, B4821, 4481, 

39A1, AC911, 89531 

[110, 5, 94] 5 1 B191, A291, B631, A8C1, 41611, 81711, 27B1, 7801, 3331, B361, CB521, 43261, BC921, 53641, CBB1, 69611, 32311, 35731, 

65261, 2411, 37C1, 1 

[115, 5, 99] 5 1 53641, C4C21, 95511, 45861, 9401, A9511, BAB31, 5141, B3A1, 2211, 89641, 93B1, 66A1, 94321, 85C1, A161, 6A391, 7161, 

BB61, 3AB1, 58511, 64B21, 68111 

[120, 5, 103] 5 1 B191, A291, B631, A8C1, 41611, 81711, 27B1, 7801, 3331, B361, CB521, 43261, BC921, 53641, CBB1, 69611, 32311, 35731, 

65261, 2411, 37C1, 52411, 67A11, 6B1 

[18, 6, 12] 6 6 C024C9, 16589B, AB836 

[28, 6, 20] 28 1 83470747880B081737A7331 

[36, 6, 27] 6 6 C024C9, 9064C3, A6666A, 980855, BCC956, 259089 

[66, 6, 53] 6 6 C024C9, 422448, 5B6A6C, 918C06, 6016A2, 8111B4, 3C0676, 7C4A08, 1B18B, 32C246, B9C5A3 

[72, 6, 58] 6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, 2C8C13 

[84, 6, 69] 28 1 28BB602605A2731CB0B90B65031,9779C314425896634952A6B4541, 6AA2C9836262784120C570C3321 

[90, 6, 74] 6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, CB02A6, BC404B, 571AA2, 01C3C  

[96, 6, 79] 6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, CB02A6, BC404B, 571AA2, 8227C, 

BC1263  

[102, 6, 84] 6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, CB02A6, BC404B, 571AA2, 8227C, 

834C31, BB1818  

[108, 6, 90] 6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, CB02A6, BC404B, 571AA2, 8227C, 

834C31, 93857, 2130B8  

[112, 6, 94] 28 1 693580A3C5B4B6B4114264B25B1, 4B3388AC355242875B3105A841, 

   498A29A8A8489B2497587593661, 354B13A9088905C58328B301941 

[114, 6, 95] 6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, CB02A6, BC404B, 571AA2, 8227C, 

834C31, 93857, 2130B8, B283 

[120, 6, 100] 6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, CB02A6, BC404B, 571AA2, 8227C, 

834C31, 93857, 2130B8, 7C85C6, 0AB0AB 

[126, 6, 106] 6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, CB02A6, BC404B, 571AA2, 8227C, 

834C31, 93857, 2130B8, 7C85C6, A67A0B,9C512A 

[132, 6, 111]  6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, CB02A6, BC404B, 571AA2, 8227C, 834C31, 

93857, 2130B8, 7C85C6, A67A0B, 115A6, 348297 

[138, 6, 116]  6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, CB02A6, BC404B, 571AA2, 8227C, 834C31, 

93857, 2130B8, 7C85C6, A67A0B, 115A6, C8833A, BB343 

[140, 6, 119]  28 1 A351438B0147A3ABCB9A6BC5681, 15894745B677671461888533801, 

   2A2121C7A84423995189AB26401, 5396C6558B1B083BC216427981, CAB6C982774602546921BBB6241 

[144, 6, 122]  6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, CB02A6, BC404B, 571AA2, 8227C, 834C31, 

93857, 2130B8, 7C85C6, A67A0B, 115A6, C8833A, 6A3704, AA727 
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A database of linear codes over F13

Table 2 Maximum known minimum distances for QT [pk, k] codes over F13 

k\p 2 3 4 5   6 7 8   9   10 11 12 13 14 15 16 17   18 19 20 21 22   23 24 25 

3 4o
 7o 10o 12   15o 18o 20   23  26o 29o 32o 34 37 40o 43o 45   48 51 54o 57oe 59   62   65o 68o 

4 5o 9o 12 16o 19 23 26 30 33 37 41e  44  48 52e  55 59e  63e  67e  71e 73   77e 81e 84 88e   

5 6 10 150 19 23 27 32e 36 40 45 49 54 58 63e  67 72e  76 81e  85e   90e   94e   99e   103e  108e 
6 7 12 16 21 27e 32 37 42 47 53e 58e 63 68 74e 79e 84e 90e 95e 100e 106e 111e 116e 122e 127e 

n0    an optimal code 

ne    new code found in this paper, and exceeds the best minimum distance in [13]   
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Table 3 Lower and upper bounds on minimum distances for linear codes over F13 

n k = 3    4    5    6  n   k = 3     4    5      6 n k = 3         4     5   6 

1         51 45-46 43-45  41-44    39-43   101 92 89-91 86-90 83-89 

2     52 46-47 44-46  42-45 40-44 102 93  90-92  87-91 84-90 

3 1    53 47-48 45-47 43-46 41-45 103 94 91-93 88-92 85-91 

4 2  1   54 48  46-48 44-47 42-46  104 95  92-94 CA 89-93 86-92 

5 3 2 1  55 49 47-48 45-48  43-47 105 96 BA 92-95 90-93 CA 87-93 

6 4  3 2 1 56 50 48-49  46-48 CA 44-48 106 96 93-96 90-94 88-93 

7 5  4 3 2 57 51  49-50 46-49 45-48 CA 107 97 94-96 91-95 89-94 

8 6  5 4 3 58 52 50-51 47-50 45-49 108 98  95-97 92-96 90-95  

9 7  6 5 4 59 53 51-52 48-51 46-50 109 99 96-98 93-97 91-96 

10 8  7 6  5 60 54  52-53  49-52  47-51  110 100 97-99 94 -98 92-97 

11 9  8 7 6 61 55 53-54 50-53 48-52 111 101  98-100 95-99 93-98 

12 10   9  8 7  62 56 54-55 51-54 49-53 112 102 99-101 96-100 94-99 CA 

13 11  10 9 8 63 57  55-56 52-55 50-54 113 103 100-102 97-101 94-100 

14 12 Be 11 Be 10 Be 9 Be 64 58 BA 56-57  53-56 51-55 114 104  101-103 98-102 95-101 

15 12 11 10  9  65 58-59 57-58 54-57  52-56 115 105 102-104 99-103  96-102 

16 13 12  11 10 66 59-60  58-59 55-58 53-57 CA 116 106 103-105 100-103 97-103 

17 14 13 12 11 67 60 59 56-58 53-57 117 107  104-106 101-104 98-103 CA 

18 15   14 13 12 CA 68 61 60 CA 57-59 CA 54-58 118 108 BA 105-107 102-105 98-104 

19 16 15 14 12-13 69 62  60-61 57-60 55-59 119 108-109 106-108  103-106 CA 99-105 

20 17 16 VG 15 VG 13-14 70 63 61-62 58-61  56-60 120 109 107-109 103-107  100-106 

21 18  16-17 15-16 14-15 CA 71 64 62-63  59-62 57-61 121 110 108-109 104-108 101-107 

22 19 17-18 16-17 14-16 72 65  63-64  60-63 58-62 CA 122 111 109-110 104-109  102-108 

23 20 DB 18-19 17-18 15-17 73 66 64-65 61-64 58-63 123 112 110-111 106-110 103-109 

24 20 19-20  18-19 16-18  74 67 65-66 62-65 59-64 124 113 111-112 107-111 104-110 

25 21 20 19-20 VG 17-19 75 68 66-67 63-66 CA 60-65 125 114 112-113 108-112 105-111 

26 22 21 19-20 18-20 76 69  67-68  63-67 61-66 126 115  113-114 109-113 CA 106-112 CA

27 23  22 20-21 19-20  77 70  68-69 64-68 62-67 127 116 114-115 109-114 106-113 
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A database of linear codes over F13

Table 3 Lower and upper bounds on minimum distances for linear codes over F13 

n k = 3    4    5    6  n   k = 3     4    5      6 n k = 3         4     5   6 

28 24 23 VG 21-22 20-21 CA 78 71  69-70 65-69 63-68  128 117 115-116 110-114 107-114 

29 25 23-24 22-23 20-22 79 72 BA 70-71 66-70 64-69 129 118  116-117 111-115 108-114 

30 26  24-25 23-24  21-23   80 72 71-72 CA 67-71  65-70 130 119 117-118 112-116 109-115 

31 27 25-26 24-25 22-24 81 73  71-72 68-72 66-71  131 120 118-119 113-117 110-116 

32 28 26-27  25-26 CA 23-25 82 74 72-73 69-72 67-72 132 121 BA 119-120 114-118 111-117 

33 29  27-28 25-27 24-26 83 75 73-74 70-73 68-72 133 121-122 120-121 115-119 112-118 

34 30 28-29 26-28 25-27 84 76 74-75  71-74 69-73 CA  134 122 121-122 116-120 113-119 

35 31 29-30 27-29  26-28 85 77 75-76 CA 72-75 CA 69-74 135 123  122-122 117-121 114-120  

36 32  30-31  28-30 27-29 CA 86 78 75-77 72-76 70-75 136 124 123-123 CA 118-122 CA 115-121 

37 33 31-32 29-31 27-30 87 79  76-78 73-77 71-76 137 125 123-124 118-123 116-122 

38 34 BA 32-33 30-32 28-31 88 80 77-79  74-78 72-77 138 126  124-125 119-124 117-123 

39 34-35  33-34 31-33 29-32 89 81 78-80 75-79 73-78 139 127 125-126 120-125 118-124 

40 35-36 34-35 CA 32-34  30-33 90 82  79-81 76-80  74-79 CA 140 128 126-127 121-125 119-125 CA

41 36 34-36 33-35 31-34 91 83  80-82 77-81 74-80 141 129 127-128 122-126 119-125 

42 37  35-36 34-36 CA 32-35 VG 92 84 BA 81-83 CA 78-82 75-81 142 130 128-129 123-127 120-126 

43 38 36-37 34-36 32-36 93 84 81-84 79-82 76-82 143 131 129-130 124-128 121-127 

44 39 37-38  35-37 33-36 94 85 82-84 80-83 77-82 144 132  130-131 125-129 122-128  

45 40  38-39 36-38  34-37 95 86 83-85 81-84  78-83 145 133 BA 131-132 126-130 123-129 

46 41 39-40 37-39 35-38 96 87  84-86  82-85 CA 79-84 146 133-134 132-133 127-131 124-130 

47 42 40-41 38-40 36-39 97 88 85-87 82-86 80-85 147 134-135  133-134 128-132 CA 125-131 CA

48 43  41-42  39-41 37-40  98 89 86-88 83-87 81-86 148 135  134-135 128-133 125-132 

49 44 BA 42-43 40-42 CA 38-41CA 99 90  87-89 84-88 82-97 CA 149 136 135 129-134 126-133 

50 44-45 43-44 40-43 38-42 100 91 88-90 CA 85-89 CA 82-88 150 137 136 130-135 127-134 CA

 
BA – Simeon Ball [17 ]           VG – quasi-cyclic code in [13 ]     Be—MDS code for n < 15 [14] 
DB – de Boer code [16] CA – new codes presented in this paper 

Unmarked entries can be obtained by puncturing technique on longer codes or [23] if k = 3 
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Table 4 Other new QT codes that are found in this work and used to derive the lower bounds in Table 3 

n k  d m α Defining polynomials 

85 4 75 17 6 C9566572B03055915, 3B90BC822420AB4, 175010787B272AC12, A4586B7A4A1555AAA, 6824A1C67B8BA3B68 

104 4 92 8 1 A9C77511, 5A613A31, C9695821, 9A4AC421, B8952121, 2AC2C01, 645B4621, A5B14521, 5661611, 74B99B1, 7809C21, 

B92B6B11, 43532621  

136 4 123 34 6 C89658606957772CB509300552519B145A,  9A340568467B478A34AA1135A5253AAA9A, 

33B2950BB9C98B2C26482101A4B841080A, 269882B42A512CA6B74B883B0A732B3638  

153 4 139 17 6 C9566572B03055915, 3B90BC822420AB4, 175010787B272AC12, A4586B7A4A1555AAA, 6824A1C67B8BA3B68, 

930647483A13A23A9, 298B252AB48307233, 8680977C590521B4A, 325B99BC68114818A  

32 5 25 8 1 965C81, 117A5C1, 6B66521, 39612911 

42 5 34 14 1 C364C197A1, C1406B7668B51, 273B691926081 

49 5 40 7 1 5274A11, 8A21511, 2696211, 32991, CAC131, 373491, 9716131 

56 5 46 7 1 6B65B1, C65C81, 4B4961, 569781, 4A16121, 84C1711, 9283C1, 87C661 

68 5 57 17 1 26778C10B7B73731, 42C4C825639842A1, 196C27211272C691, 6A30BA1C25566381 

96 5 82 8 1 3BA79211, C57B3311, 25B43731, C647121, A981611, 16715B1, 98C1C811, 2472C951, 8470C41, 29327121, 7A1A781, 

C85B6B1 

119 5 103 17 1 158BCB3BCB851, 43227B2CB6976681, 1939C57875C9391, 550102645A546201, A463983A2316C151, 3839B779C2980661, 

315895A570C81241 

126 5 109 14 1 C364C197A1, 913937AB67CC1, 21472632237C1, 8986292BB3AB1, 3062CA237511, 76B23513759411, 68B307A1CC521, 

35096BA095421, 963CA473580A1 

136 5 118 8 1 5ABAB321, A7916721, 3462211, 286B9621, 979BAA1, B761AC1, 68C5971, 47681341, 79883511, A1A86A31, 95643721, 

B9643B51, B59B7321, 312B8C11, C7AC5A11, B78B7A1, 781B7B1 

147 5 128 21 1 CBC6C37BC7B51A88C1111, C5843C3AA792418224C1, C46981C81A47C179B1C11, 2487C583226B53651B11, 

B1A625C6B3C6B5054C91, 64CB15B59406B66416A1, A34881B17C650445C121  

150 5 130 5 1 B191, A291, B631, A8C1, 41611, 81711, 27B1, 7801, 3331, B361, CB521, 43261, BC921, 53641, CBB1, 69611, 32311, 35731, 

65261, 2411, 37C1, 52411, 67A11, 4751, C4531, A6311, 67161, CBA31, 82911, 81  

21 6 14 3 6 C2C, AA8, 9BB, 88C, A81, 71A, 042;  0C2, 3A9, 9C5, 38, 5C4, 3A4, 054 

27 6 19 3 6 C2C, AA8, 9BB, 88C, A81, 71A, 5BB, A87,  608;  0C2, 3A9, 9C5, 38, 5C4, 3A4, 803, 939, A35 

49 6 38 7 1 7B6A311, 3CC651, 5B39641, A9B171, C89CA1, 893C421, 953B911 

57 6 45 3 6 C2C, 015, 1A, 95, 1A2, 10C, 435, 204, 169, 0A5, 676, 769, 82C, B8C, 524, 4BA, 52C, 963, 249;  0C2, 605, 916, CC4, 689, 6A4, 

5AA, 361, 88C, 099, 80B, CB5, 902, B66, 7B6, 576, 9C3, B34, 49B  

81 6 66 3 6 C2C, AA8, 9BB, 88C, A81, 71A, 5BB, A87, 288, 8B3, 391, CAB, 866, 371, 621, 453, 2A8, 9CB, 491, 345, 818, BA5, 26B, 248, 

795, C6, 7B6;  0C2, 3A9, 9C5, 38, 5C4, 3A4, 803, 939, CA2, 479, 8A1, CCA, 205, 14B, 805, 181, 416, 7AA, 30B, AC, 489, 418, 

482, 80A, C35, 511, 2C9  

99 6 82 3 6 C2C, 043, 991, A4A, 73, 342, 103, B55, C51, 054, 962, 052, B18, 9C9, A35, 95A, 7CC, 042, 788, 3C6, 45B, CA3, 377, 43, 025, 

9C3, 7B9, 049, A82, B75, 628, A19, 09C;  0C2, 11A, B96, 577, 743, 1B7, 867, 915, 68, 6B7, 4B5, 977, B09, 681, 7AC, A51, 91, 

8BB, 879, 8C3, 839, 5AC, 414, 165, B7B, 304, 8BC, 36A, 003, 368, CB8, 313, 38 

117 6 98 3 6 C2C, B51, 80B, B18, 525, 38B, B36, A76, 68B, C61, 24C, 865, 6A4, 82C, 331, 879, B6A, 04C, 391, A0C, 217, A7, 711, CCA, 

35C, C84, A24, 0C1, 216, 993, C35, 8B8, A88, 747, A66, 3AB, 361, 044, 6A7;  0C2, C72, 4C3, 1A6, 901, 363, 4C8, 472, 5A6, 

C09, 2B9, B74, 729, B44, 2A4, 2B, 346, A04, C19, 304, 0C4, 6BC, 5CA, B6B, 6, 61C, C24, 7C8, 1B4, 282, 587, C87, 196, 03C, 

68A, 346, 89B, C82, A98   

135 6 114 3 6 C2C, 532, 556, CCB, 7B2, 59A, 26, BB4, C22, 53A, 968, 3AA, B3C, 37, 4C8, 905, 82B, 119, 271, 112, 565, A8, 9C5, B7B, 

5AB, C22, 077, 216, 8B1, C14, 9CC, 06, 3C8, BAA, 745, 501, 295, 0CA, B9C, 404, 23, 16C, 5C2, 031, 1A4;  0C2, 81C, A1, 038,

C86, 5C3, B7A, 31A, ABA, 54B, 591, BB4, 2A7, 096, 243, A64, 5B9, 37, 61B, C76, 1C9, 40A, 3A5, A42, C4B, 552, 252, 65, 

A68, 975, 96A, 989, 2B4, 383, 902, 94C, 626, 878, B45, 7A8, CCB, C48, 13B, 526, 374  

147 6 125 21 1 15927A7C452B83136931, C8905A324208569C6611, 850175159485BB722991, 5796B3114C22C917C231, 

32AA65B413508B2BA141, 46854B05322A8664661, B773147B873A94886041 

150 6 127 6 6 C024C9, 015C, 73CA6A, 0073A6, 7742C9, 4C3651, 641374, 42BB6, 22133, 56723, 2CBA85, CB02A6, BC404B, 571AA2, 

8227C, 834C31, 93857, 2130B8, 7C85C6, A67A0B, 115A6, C8833A, 6A3704, 25574C, BB1818 
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A database of linear codes over F13

Table 5 Other new optimal QT [pm, 3] codes found in this work 

n p m d α Defining polynomials 

8 2 4 6 1 11, 2321 

14 2 7 12 1 18481, A8B8A11 

20 5 4 17 1 11, 4961, 6831, 671, 231 

32 8 4 28 1 11, 4961, 6831, 671, 4521, 3311, AB21, 8921 

35 5 7 31 1 3C72B1, 19CC91, 6A6011, 3494311, B323B11 

77 11 7 70  1 A8B8A11, 18481, 19CC91, 8535811, 3494311, 2437A1, 64BA931, 2959211, 75A821, B786451, C64971 

78 26 3 71 1 211, 261, 531, 341, 1, B1, 6A1, 491, A31, 851, 21, 581, 241, 451, 811, 11, 351, 621, 31, B41, 671, 421, 911, 81, 321, B51 

87 29 3 79 1 [78, 3, 71] code, 411, C71, 51 

88 22 4 80 1 11, 4961, 6831, 671, 4521, 3311, AB21, 8921, 341, 5731, 561, 2321, 4851, 6611, BC1, 3531, 121, 8A31, 9A1, 2211, 4741, 

6941 

90 30 3 82 1 [87, 3, 79] code, 311 

91 13 7 83 1 [77, 3, 70] code,  47BAC1, A39651 

102 34 3 93 1 511, 321, C21, B51, A11, 821, 431, 231, 521, 241, 31, 611, 361, 911, 1, 541, 6A1, 91, 671, 581, B21, 921, 341, 471, 851, 311, 

C11, B11, 831, B41, 421, 11, 641, 491 

105 35 3 96 1 421, 851, 411, C31, 21, 491, 11, 231, 61, 211, 511, 361, C91, 1, 341, 581, 921, 651, 6A1, 241, B1, A31, 51, 321, 471, 831, A1, 

641, 531, 621, C21, 261, B51, 911, 541 

116 29 4 106 1 11, 2321, 4961, 6941, 4521, 891, 2211, 341, 6831, 671, 9A1, 3A81, B361, 3531, C131, 4411, AB1, 8B41, 9A21, 8A31, 231, 

B141, 5621, 2651, 2431, 781, 5511, 4851, 6611 

117 39 3 107 1 231, 51, 71, 431, 531, 261, B21, C91, 911, 811, C71, 1, 11, A11, 361, C31, 61, 541, 641, 671, 91, 611, 341, 621, C11, 471, 321,

21, 81, 491, B51, 831, 511, 451, 821, A31, 211, 921, 521 

129 43 3 118 1 A31, 641, B31, C21, 921, 41, 321, 6A1, 531, A1, C11, 61, B51, 51, 511, 421, 11, 821, 541, B41, C71, 491, C31, 91, B1, 81, 

471, 361, 241, 211, 711, 571, C1, 261, 341, 621, 71, 611, 431, 411, 581, 851, 671 

132 44 3 121 1 341, C91, 261, 671, B1, 831, C1, B41, 921, 311, C31, 51, 821, 231, 91, 711, 811, 511, A1, 1, 431, 581, 471, 411, A31, 11, 491, 

351, C21, 611, 6A1, 81, 641, 241, 31, 321, B31, A11, 911, 71, B11, 851, 451, C71 

144 48 3 132 1 431, 581, 911, 711, 231, 471, 341, A11, 51, 321, 851, 361, 421, 821, B41, 261, C21, 81, B31, 511, 241, C91, 921, B51, 31, 211,

811, 611, A31, 411, 671, C11, C31, 521, 351, 21, 641, 451, 11, 491, 531, 311, 6A1, 651, 621, B1, C71, 1 

159 53 3 146 1 211, 261, 531, 341, 1, B1, 6A1, 491, A31, 851, 21, 581, 241, 451, 811, 11, 351, 621, 31, B41, 671, 421, 911, 81, 321, B51, 411, 

C71, 311, 51, C31, 71, 361, 431, 651, 711, C21, B11, 511, A21, 571, C91, 611, 231, 921, 61, A11, C1, 471, 521, B31, C11, 41 

160 40 4 147 1 11, 4961, 6831, 671, 4521, 3311, AB21, 8921, 341, 5731, 561, 2321, 4851, 6611, BC1, 3531, 121, 8A31, 9A1, 2211, 4741, 

6941, 8B41, 231, 5621, 5511, 3A81, B361, C131, 781, 2651, 3421, AB1, B141, 2431, 4411, 3641, 6721, 451, 891 

161 23 7 148 1 18481, A8B8A11, 19CC91, 8535811, 47BAC1, 75A821, B323B11, 2959211, CB6BC11, 985B41, 86B9321, 2437A1, 

64BA931, 3494311, B786451, 7ACA711, 3548B21, 5747511, 6A6011, A39651, 522501, A96C521, 3C72B1  

162 54 3 149 1 [159, 3, 146] + 821 

164 41 4 151 1 11, 4961, 6831, 671, 4521, 3311, AB21, 8921, 341, 5731, 561, 2321, 4851, 6611, BC1, 3531, 121, 8A31, 9A1, 2211, 4741, 

6941, 8B41, 231, 5621, 5511, 3A81, B361, C131, 781, 2651, 3421, AB1, B141, 2431, 4411, 3641, 6721, 451, C241, 891 
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Table 5 Other new optimal QT [pm, 3] codes found in this work 

n p m d α Defining polynomials 

165 55 3 152 1 [162, 3, 149], 641 

168 56 3 155 1 [165,3, 155], 91 

171 57 3 157 1 C91, 361, A31, 921, B11, 1, 51, A11, 211, 851, 311, 241, C21, B1, 31, B51, 491, 621, 11, 451, 71, 651, 671, B41, 421, 511, 81, 

541, C11, 531, 341, 611, 521, 431, C71, 21, 581, 471, 831, 811, 911, 61, A1, 641, 411, B31, A21, C31, 41, C1, 571, 231, 261, 

6A1, 321, 351, 91 

174 58 3 160 1 [171, 3, 157],  711 

175 25 7 161 1 18481, A8B8A11, 19CC91, 8535811, A39651, 2437A1, 47BAC1, 75A821, CB6BC11, 6282611, B4A7621, 5747511, 6A6011, 

7ACA711, 3548B21, B323B11, 3C72B1, 985B41, 522501, 2959211, 3494311, B786451, 64BA931, A96C521, C64971 

177 59 3 163 1 [174, 3, 160] code, 821 

180 60 3 166 1 [177, 3, 163] code,  B21 

182 26 7  168 1 [175, 3, 161] code, 86B9321 

183 61 3 169 2 431, 521, 721, A1, 81, 651, 471, 511, A21, 811, 91, B51, 711, 121, A41, 11, 31, A11, 411, 531, 21, 451, 341, 41, 321, C91, 641,

311, 831, 611, 71, 731, B71, B21, C1, 821, 621, 351, 891, B11, C11, C71, A81, 921, 1, B31, 941, 851, 61, 961, 911, 51, 111, 

B41, 951, 861, 671, A31, C31, C21, B1 

186 62 3 170 1 C11, 811, 71, 471, 21, 521, 211, 491, C21, B11, 31, 11, 261, C91, 621, 921, 361, 51, 81, 641, A11, C71, B51, 611, B1, 571, 

A31, 671, 91, 411, 431, 41, 541, B21, A1, 341, 241, 581, 511, 421, 61, 6A1, 321, 711, 911, 531, 351, B41, 311, B31, B31, 651, 

C1, 451, 821, 1, C31, 851, 231, 831, 831, A21 

188 47 4 172 1 11, 3A81, 2431, 231, AB1, 6941, 4521, 8B41, AB21, 9A21, B141, 3531, 2321, 4961, 2211, 6611, 3641, 8A31, 3421, 3311, 

6721, 4851, 451, 341, C241, 9A1, 5511, BC1, 781, 121, 121, 561, C131, 891, 5621, 4411, 671, 4741, 5731, 2651, B361, 8921, 

6831, C01, BC21, 6C71, AC31 

192 48 4 176 1 C131, 5511, B361, 8921, AB1, 5621, BC1, 8921, 451, AB21, 671, 2211, 6941, 121, 6611, 6831, C01, 231, C241, 3531, 781, 

5731, 2431, 341, 8A31, 3311, 4521, 9A21, 561, 3641, 6721, 11, 2651, 3421, 4741, B141, 891, 4851, 2321, 4961, 4411, 8B41, 

8B41, 9A1, 3A81, CC11, 4C91, BC21 

189 27 7 173 1 CB6BC11, 5747511, 522501, 18481, 2959211, 985B41, 3C72B1, 64BA931, B4A7621, C64971, 75A821, 86B9321, 8535811, 

8535811, 6A6011, B323B11, B323B11, 19CC91, A8B8A11, 3494311, 2437A1, 47BAC1, 6282611, 7ACA711, A96C521, 

B786451, 3548B21 

204 17 12 187 1 4BA782CA2831, 5A96A793501, A2085669411, 274A0532321, C4C133A1141, C4C133A1141, 5262343C8511, 

55428CA6C1, 55428CA6C1, 6B299CBCA81, B36B4B85991, 246A8A98C621, 246A8A98C621, 91756140C61, 

2C1662AB6711, 57B65C291421, B837A821C111 
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Table 6   Optimal QT [pm, 4] and [pm, 5] codes  

n k p m d α Defining polynomials 

10 4 2 5 7 1  C01, B2B11 

14 4 2 7 11 1 C851, B636B11 

15 4 3 5 11 1 C01, 96911, A111 

16 4 4 4 12 1 4121, 7211, A431, 41 

18 4 3 6 14 1 C71, 91A81, 9A6111 

20 4 5 4 16 VG 1 116, 1B, 1186, 142, 134A 

25 4 5 5 20 1 C01, 96911, 28111, 95B1, 5611 

28 4 7 4 23 VG 1 14, 13, 1159, 163B, 1252, 112C, 1294  

68 4 4 17 60 6 C9566572B03055915, 663CC4022720508C5, 8680977C590521B4A, 972A15A2473369C09 

153 4 9 17 139 6 C9566572B03055915, 3B90BC822420AB4, 175010787B272AC12, A4586B7A4A1555AAA, 

      6824A1C67B8BA3B68, 930647483A13A23A9, 298B252AB48307233, 8680977C590521B4A, 

      325B99BC68114818A 

10 5 2 5 6 VG 1 13A, 10AA 

12 5 2 6 8 1 11, 512721 

14 5 2 7 10 1 6B65B1, C65C81 

15 5 3 5 10 1 B191, A291, 721  

18 5 3 6 13 1 32B131, 8C4121, 51271 

20 5 4 5 15 VG 1 18, 14AC4, 1C8B, 12B3C 

15 6 5 3 9 6 C2C, AA8, 9BB, 88C, 2A2; 0C2, 3A9, 9C5, 38, A04 

18 6 3 6 12 6 C024C9, 16589B, AB836 
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