Om barns förståelse för areabegreppet.

Författare
Emelie Agnesson
Eva-Marie Brorsson

Handledare
Jonny Åkesson

www.hkr.se
Om barns förståelse för areabegreppet.

Abstract

Ämnesord:
Förståelse, area, matematik, läromedel, mekanisk räkning,
Innehållsförteckning

1. INLEDNING .. 5
 1.1 VAD ÄR DÅ FÖRSTÅELSE?.. 5

2. LITTERATURGENOMGÅNG.. 6
 2.1 LÄROMEDLETS ROLL I UNDERVISNINGEN .. 6
 2.2 MATEMATIKUNDERVISNING.. 7
 2.3 DET EGNA SPRÅKETS VIKT FÖR FÖRSTÅELSE ... 7
 2.4 LABORATIV MATEMATIK.. 8
 2.5 VARDAGSERFARENHETER - SKOLKUNSKAPER .. 8
 2.6 VARIATION.. 9

3. PROBLEMPRECISERING... 9

4. EMPIRISK DEL .. 10
 4.1 TILLVÄGAGÅNGSSÄTT ... 10

5. RESULTAT .. 11
 5.1 DAGBOK LEKTIONER ... 11

6. DISKUSSIONS DEL... 19
 6.1 METODDISKUSION ... 19
 6.2 RESULTATDISKUSION ... 20
 6.2.1 Läromedlets roll i undervisningen .. 21
 6.2.2 Matematikundervisning ... 22
 6.2.3 Det egna språkets vikt för förståelse .. 22
 6.2.4 Laborativ matematik... 23
 6.2.5 Vardagserfarenheter-skolkunskaper.. 24
 6.2.6 Variation.. 25

7. SLUTSATS ... 26

8. FÖRSLAG TILL FORTSATT FORSKNING ... 26

9. SAMMANFATTNING .. 27

10. REFERENSLISTA ... 28
 BILAGA 1.. 29
 BILAGA 2.. 32
 BILAGA 3.. 33
 BILAGA 4.. 34
 BILAGA 5.. 35
1. Inledning

Vi ville undersöka om barn genom konkreta verklighetsnära arbetssätt, när en djupare och mer långsiktig förståelse för begreppet area. Vi ville självklart ge barnen chans att få förståelse, men även förbättra vår egen förmåga att upptäcka när eleverna kommer till insikt om sin egen förståelse och vägen dit.

Vi har upptäckt under det här arbetet att det var svårt att få tag på böcker om undervisning i matematik som vänder sig till majoriteten av eleverna, däremot är det lätt att hitta böcker som vänder sig till hur man arbetar med barn som har inlärningssvårigheter, dyskalkyli osv. Vi efterlyser litteratur där man kan läsa om de genomsnittliga elevernas behov.

1.1 Vad är då förståelse?

Begreppet förståelse är relativt och kan betyda olika för olika människor. Men detta är vår definition av förståelse.

Allas förståelse är olika på grund av förkunskaper och uppväxtmiljö. Ett barn som får tänka och klura ut saker, ställa frågor och få svar har större chans att utveckla sin förståelse än ett barn som berövas den sortens stimulans.

"Att förstå är att begripa, att uppfatta meningen eller innebörden i ett fenomen. Kunskap som förståelse kan vara mer eller mindre privat." (Skola för bildning, SOU 1992:94, kap 2, s.95)

2. Litteraturgenomgång

2.1 Läromedlets roll i undervisningen

Genom att ge eleverna målinriktade och stimulerande uppgifter, då de tvingas kommunicera med varandra och tänka matematik ökar möjligheten att de lär sig uppskatta matematik och samtidigt få en god förståelse.

"När eleverna gjort matematik utan att tänka matematik är det inte så konstigt att det blir svårt när de kommer till de benämnda uppgifterna där det faktiskt krävs lite matematiskt tänkande. “ (Berggren, Lindroth, 1997, s.15)

given regler utan att behöva tänka”. Detta anser författarna är meningslös innötning av kunskap utan att få förståelse.

2.2 Matematikundervisning

"Ett viktigt steg mellan elevernas laborerande med objekt och abstrakt arbete med tal är ett steg där de får föreställa sig objekten och utveckla förmåga att kunna skapa inre föreställningar. Genom vår förmåga att göra oss inre föreställningar om händelser och fenomen kan vi när vi t.ex. ska lösa problem, kommunicera med oss själva via vårt inre tal.” (2002, s.25)

2.3 Det egna språkets vikt för förståelse

"Genom att kommunicera med sitt eget talade språk, använda sina egna uttrycksformer, rita bilder och handskas med verkliga objekt, skaffar sig barnen erfarenheter som sedan kan utvecklas till formella kunskaper och förståelse.” (s. 25)

"Genom att använda sig av ett enkelt språk tas inte energi från problemlösningen till rent språkliga formuleringar, och det hjälper att klä tanken i ord. ... Att med sitt vanliga språk formulera sina tankar är ett stort och mycket viktigt steg.” (s.90)
Ett av målen att uppnå i grundskolan enligt Lpo94 är att ”skolan ansvarar för att varje elev efter genomgången grundskola behärskar grundläggande matematiskt tänkande och kan tillämpa det i vardagslivet.”

Kursplanen framhåller att:

”Utbildningen i matematik skall ge elever möjlighet att utöva och kommunicera matematik i meningsfulla och relevanta situationer i ett aktivt och öppet sökande efter förståelse, nya insikter och lösningar på olika problem.” (s.26)

2.4 Laborativ matematik

2.5 Vardags erfarenheter - Skolkunskaper

”Det är viktigt att utgå från elevernas erfarenheter och uppfattningar och sträva efter att utveckla deras tänkande och kunskande. I skolan kan en diskussion föras utifrån barnens vardags erfarenheter för att ge en fördjupad förståelse av t.ex. geometriska begrepp.” (Nämnaren (red), 1996, s. 166)

Författarna anser att det finns ett viktigt samband mellan elevernas erfarenheter från vardagen och kunskaper från skolan.
Löwing och Kilborn (2002) är inne på samma tankegång när de ställer frågan:

"Var finns den vanliga människans matematik, den som bygger på konkretisering och där lösningen av problemen inte bygger på abstraktion eller beskrivs med matematiska objekt utan på vardagserfarenheter och användandet av ett vardagsspråk?" (s.41)

Dysthe (1996) påpekar i sina fallstudier att äkta engagemang uppstår när elevernas frågor, åsikter och svar, blir en del av samtalen i klassen. När deras röster och åsikter räknas som viktiga blir eleverna engagerade i diskussionen. Det är viktigt att eleverna är trygga i klassen så att de vågar uttrycka sina åsikter, men också att de inser att undervisningen i skolan är betydelsefull för deras vardag utanför skolan.

2.6 Variation

3. Problemprecisering

I litteraturgenomgången belyser vi åsikter som framförts i litteraturen om elevers väg till förståelse då det gäller matematik. I merparten av litteraturen framgår det att barn genom användning av konkret material och verklighetsbaserad undervisning, där de får använda sitt eget talade språk, rita och kreativt lösa problem, ökar deras intresse och förståelse för matematik. Litteraturen tar upp att en läsning till läromedel hämmer barnens inlärning.
Våra erfarenheter från litteraturen tillsammans med vårt syfte för undersökningen gav oss denna frågeställning:

- Kan man underlätta barns väg till förståelse då det gäller begreppet area genom användning av konkret material och varierande undervisning?

4. Empirisk del

Vi har gjort en undersökning i en årskurs 5 med 25 elever. Undervisningen utgår ifrån en undervisningsmodell om 7 lektioner som vi har satt ihop, som skiljer sig från klassens traditionella matematikbok. Vi valde att lägga de skriftliga utvärderingarna efter lektion ett, tre, sex och sju. Men naturligtvis tjänade också diskussionerna och observationerna under och efter varje lektion som muntliga utvärderingar och reflektioner för vår fortsatta undersökning.

4.1 Tillvägagångssätt

(se lektionsplanering, bilaga 1)

Lektion 1

Lektion 2

Vi började denna lektion med att repetera och diskutera det vi gått igenom under gårdagens lektion. Sedan skulle eleverna beräkna arean på valfria objekt i klassrummet.
Lektion 3
Även denna lektion startade med en repetition där vi då vi återigen gick igenom hur man beräknar arean på kvadrater och cirklar. Vi introducerade även hur man räknar ut arean på en triangel.

Lektion 4
Under denna lektion skulle eleverna leta upp givna areor i klassrummet. Vi använde elevernas egna mätningar från lektion 2.

Lektion 5
Idag hade vi två uppgifter till eleverna. I den första uppgiften skulle de beräkna arean på två trianglar, en likbent och en rätvinklig. Den andra uppgiften gick ut på att eleverna skulle gå ut på skolgården och beräkna arean på tre olika föremål som de kunde hitta där.

Lektion 6
Vi startade dagens lektion med att repetera hur man beräknar arean av en triangel. Eleverna fick sedan i uppgift att skapa egna problem som deras klasskamrater sedan skulle räkna ut.

Lektion 7
Denna lektion skulle eleverna räkna ut arean på en oregelbunden geometrisk figur. De fick sedan i uppgift att arbeta i matematikboken.
(se bilaga 4)

5. Resultat
5.1 Dagbok lektioner

Lektion 1
Vi började med att skriva area på tavlan.
Eleverna funderade och diskuterade och delgav oss sedan sina tankar.

Tankarna var inte så många. Det kan ha berott på blyghet eller att de inte visste så mycket om begreppet. Några var inne på volymbegreppet och även omkrets.
Väldigt få verkade veta hur man räknade ut area. Det var två eller tre i klassen som visste hur man gjorde, dessa elever ligger en matematikbok före de övriga i klassen. Eleverna sa också att man kunde använda sig av area när man byggde hus.

Vi kom till slut fram till att area är storleken av ytan i ett begränsat område.

Övning 1: (Se bilaga 2.)

Kvadrater i kvadraten

Vi gav eleverna den lilla figuren först. Vi bad dem fundera på hur de skulle räkna ut dess area.

Några hade ingen aning om hur de skulle göra. Diskussionerna var dock livliga. De diskuterade både i par och med dem som satt i närheten.

Vissa räknande rutorna runt om och fick därmed reda på omkretsen, andra räknade alla rutorna.

En elev räknade alla rutorna men kom sen på att det räckte att multiplicera de två sidorna. Det var denna förståelse som vi var ute efter.

Stora Rutkvadraten

Vi använde oss av samma sorts figur fast en med ett mycket större antal rutor, 16x16 cm². Eleverna fick nu två och två fundera över hur man enklast räknande ut arean på denna figur.

Här blev det många varierande lösningar.

Några räknande alla rutorna, några försökte multiplicera sidorna, men vissa föll då på att de inte klarade av att räkna en algoritm med tiondsmultiplikation.

Några delade in kvadraten i mindre områden och använde sig av multiplicationstabellerna de behärskade, dessa mindre områden adderade de sedan ihop.

Vi kom fram till att det sistnämnda var det enklaste sättet att komma fram till rätt lösning, eftersom de inte behärskade den multiplikationsalgoritmen som krävdes.

Övning 2:
(se bilaga 3)

De flesta hade klart för sig hur man räknade ut detta men flera räknade ut omkretsen istället. Några började göra rutor i figurerna för att sedan räkna ut, någon undrade hur man använde linjalen.
De flesta gissade innan på att figurerna var lika stora.
- Delar man den långa och lägger dem jämte varandra får den plats i kvadraten, sa en kille.

Utvärdering
Utvärderingen var övervägande positiv, de allra flesta verkade ha förstått. Det syntes också tydligt på utvärderingen som alla gjorde. Många förklarade hur man gjorde och hur de tänkt. Här kommer några exempel:

"I dag har jag lärt mig mycket om area. Det var lättare än jag trodde". Flickan har sedan ritat en kvadrat och fyllt i de sidor man ska multiplicera med rätt.

"Jag har räknat med area och det har varit ganska klurigt. Tänk att man kan lära sig att räkna area på en timme! När jag gick hit visste jag inte vad area var och nu vet jag exakt vad det är. Killen har sedan räknat ut arean på en rektangel han själv ritat.

Efter att vi introducerat figurerna med rutor i och eleverna hade kommit fram till att det var lättare att multiplicera två av sidorna istället för att räkna alla rutorna, såg många det som ett knep istället för en formel. T.ex. basen multiplicerat med höjden= Arean
Vårt mål med första lektionen var att alla elever skulle få en begynnande förståelse för hur man räknar ut arean. Vi anser oss ha uppnått målet. Vi tycker att 21 av 25 elever har visat förståelse för begreppet area så här långt i det inledande skedet.

Lektion 2
Sedan skulle de mäta olika föremål i klassrummet. De fick själva välja vilka. Efter ett tag frågade en elev om han fick räkna ut arean på ett runt föremål, och det fick han gärna göra. Han visste vad radie var och att man använder sig av pi (3,14). Vi fick hjälpa honom med vilken formel man använder när man räknar ut arean på cirklar (r x r x pi). Denna elev tillhörde i klassen som ligger en matematikbok före de andra och har fått en kortare introduktion om radie, diameter och pi. Klassen använder sig av miniräknare vid mer komplicerade uträkningar, då läraren anser att det är viktigt att eleverna klarar av att dels använda miniräknare och dels klarar att lösa de uppgifter som de ställs inför. Detta för att de inte ska misslyckas med sin uträkning och därmed tappa intresset för uppgifterna.

Att leta och mäta föremål höll eleverna på med under ca 40 min. Det hördes spridda kommentarer om uppgiften, men de flesta tyckte att den var rolig.

Eleverna var kreativa och hittade många saker att göra uträkningar på och deras uträkningar kommer sedan att användas i en lektion längre fram.

Lektion 3

Utöver uträkningen fick eleverna rita och skriva ner vad de lärt sig under lektionen. Vi uppmanade dem att rita och förklara så tydligt som möjligt.

Resultatet var övervägande positivt. Alla 24 eleverna (1 sjuk) verkade ha förstått hur man räknar ut arean på fyhörningar och cirklar. 8 elever visade osäkerhet på hur man räknar ut
arean av en triangel, men eftersom detta var första tillfället var vi mycket nöjda med resultatet.

Lektion 4

Idag fick eleverna använda sig av de mät och uträkningar de tagit fram på föremål i klassrummet under lektion 2. Vi delade ut lappar där det t.ex. kunde stå: *Mina sidor är 10 cm, min area är 100 cm². Vilken sak är jag?*

Lektion 5

Övning 1:

Utemätningar

Vi gick igenom deras resultat på tavlan. De fick välja att berätta om en ”sak” som de uppskattat, mätt och räknat ut arean på. De allra flesta grupperna hade lyckats få uträkningarna rätt och också uppskattat ganska nära det verkliga måttet.
Det förvånade oss att ingen av grupperna hade valt att mäta trianglar, även om dessa fanns att hitta på skolgården, bland annat i ”hagarna”. Två grupper hade valt att mäta cirklar, resten mätte endast kvadrater eller rektanglar.

Övning 2:

Triangeln

Eleverna fick två papper, ett med en rätvinklig triangel på och ett med en likbent triangel på.

Vid en tidigare genomgång då vi pratade om hur man räknade ut area på en triangel så visade vi hur de kan göra om triangeln till en fyrhörning för att på konkret sätt visa varför man ska dela med två. Detta eftersom triangeln är hälften så stor som fyrhörningen. När eleverna fick trianglarna och skulle försöka räkna ut areaen utifrån en genomgång från en tidigare lektion blev resultatet varierande. Vi valde att inte ha någon genomgång inför detta moment eftersom vi ville se hur mycket de mindes från lektion tre.

![Diagram](attachment://triangle_square.png)

Resultat: Flera elever hoppade över vissa moment i uträkningarna, vissa elever räknade i huvudet, utan att visa hur de hade kommit fram till svaret. En del räknade bara ut areaen på fyrhörningen och delade inte med två. Några elever visste inte hur de skulle göra, eller försökte räkna ut areaen genom att använda trianglens sidor.
Lektion 6
Vi började med en repetition på hur man räknar ut arean på en triangel och en cirkel. Vi ritade figurer på tavlan och ställde frågor till eleverna om hur de skulle räkna ut arean. De var vildigt sega, denna måndags morgon, och få elever räckte upp handen i början. När vi påpekade att det var så få som räckte upp handen och vi undrade om alla de andra hade glömt bort hur man gör, så var det fler händer som räcktes upp. De flesta visste hur man räknar ut arean, även de som inte räckte upp handen, det visades i den uppgiften som de sedan fick.

Övning

Vi upptäckte att många av eleverna valde att först rita figurerna och sedan, när de själva skulle räkna ut arean, mäta för att se hur långa sidorna var. Detta medförde att de flesta fick räkna med decimaler. Istället för att multiplicera t ex 3 gånger 3, så fick de multiplicera 3,6 gånger 3,6, detta för att de tyckte det var för jobbigt att ändra den redan ritade figuren så att sidorna blev utan decimaler.

Några av eleverna hann med att räkna ut arean på fler figurer, de bytte med flera kompisar. På frågan vad de tyckte om att göra egna ”problem” och att räkna ut kompisarnas, svarade de flesta att det var roligt. Vi observerade även under lektionens gång att det verkade som om de gillade detta arbetssätt.

Utvärdering
– Vad är area? Hur skulle du förklara för en elev i åk 3 vad area är och hur man räknar ut den?

Många hade valt att beskriva hur man räknar ut area på de tre figurerna som vi använt i vår genomgång, cirkel, triangel och fyhörning. Några andra hade bara valt att visa hur man räknar ut area på en fyhörning, helst kvadrat. De flesta ritade och beskrev kortfattat hur de gick tillväga vid uträkningarna. Några valde att bara skriva löpande text om hur area räknas ut.

Lektion 7

Övning: 1

Vi började dagens lektion med att dela ut ett papper med en oregelbunden figur på. De skulle sedan räkna ut area på denna figur. Vi hade ingen genomgång innan utan vi ville se hur och om eleverna kunde klara ut det ändå.

Resultatet var överraskande positivt. De allra flesta klarade av det utan hjälp även de som i vanliga fall inte har så lätt för matte. Vid genomgången kom vi fram till att klassen tillsammans hade använt sig av sju olika sätt för att lösa problemet.

De flesta eleverna verkade finna denna uppgift rolig och utmanande.

(Se bilaga 4 och 5)

Övning: 2

Matematikboken (Talriket 5a, 1995, Gleerups)

Nu ville vi prova deras färdigheter genom att de skulle räkna ut av oss valda uppgifter i matematikboken. Helt plötsligt, så fort de öppnade matematikboken försvann all areakunskap de tillgodogjort sig de senaste 7 lektionstillfällena! Uppgifter som de tidigare inte haft några större problem att lösa blev plötsligt omöjliga, t.ex. areor av cirklar och trianglar!

De hade plötsligt glömt bort att vi hade gått igenom hur man kan räkna ut area på en triangel genom att göra om den till en fyhörning, räkna ut area på den och dela med två. De tyckte att trianglarna såg konstiga ut i boken, det gick inte att göra om dem till kvadrater eller rektanglar för ingen av sidorna blev lika långa. (Triangeln i boken var något vriden, basen var...
inte horisontell, utan triangeln stod på en spets.) Efter att ha hjälpt flertalet elever med att tänka i ”rätt bana” så löste de flesta till slut uppgifterna i matematikboken.

Utvärdering
Hur var det att jobba med area i matematikboken? Hur var det att jobba med area utan matematikboken? Varför tycker du så?

De flesta tyckte att det var roligt att räkna i matematikboken. De tyckte att det var länge sedan som de räknade i den. De flesta ansåg att det var roligare utan matematikbok, eftersom de fick använda sin fantasi mer, man lär sig mer när man gör det på riktigt och inte bara tittar i en bok och att det är bättre när någon berättar om t ex area istället och de får arbeta med konkret material.

När vi gick igenom räknehäftena för att kolla deras uträkningar, upptäckte vi att de hade glömt hur man räknar ut arean på triangeln, att man ska dela med två. Kvadrater och rektanglar gick bra, men cirklar var det lite si och så med. Många valde att bara skriva formeln \((r \times r \times \pi = A)\) men skrev inte upp några siffror som visade hur de räknat ut den, möjligen bara ett svar.

De flesta uppgifterna i matematikboken bestod tyvärr mestadels av kvadrater och rektanglar och de kunde därför endast färdighetsträna på dessa former. Cirklar och trianglar förekom endast i ett fåtal uppgifter.

Trots detta jobbade de vidare i matematikboken och löste flera uppgifter i kapitlet Area

6. Diskussions del

6.1 Metoddiskussion
Vi valde att lägga upp vår undersökning så att eleverna fick komma till tals, diskutera med oss och varandra, samt lösa praktiska problem för att vi ta reda på om eleverna lättare når förståelse för det matematiska begreppet area.

Lektionerna fungerade bra, uppfyllde sitt syfte och bjöd inte på några större överraskningar. Elevernas förståelse verkade stadigt öka gällande begreppet area. Vi hade upprepade
Repetitioner där eleverna bidrog med sina kunskaper och förståelsen verkade befäst. Vid sista lektionspassets sista övning var förvirringen total! Eleverna skulle jobba med area i matteböckerna och plötsligt hade hälften glömt bort vad area var för något! Vår reaktion och lärarens var densamma. ”Vad hände?” Det eleverna klarat galant i början av lektionen blev ett mysterium när liknande uppgifter framträdde i matematikboken. Kunde vi ha gjort undersökningen annorlunda och på så vis fått ett annat resultat, när eleverna skulle arbeta i matematikboken? Vi tror att om man omväxlande hade arbetat med matematikboken och de praktiska uppgifterna från början, så hade omställningen bli mindre

6.2 Resultatdiskussion

Vi såväl som klassläraren hade upplevt det som att eleverna hade förstått begreppet area och dess innebörd, att area är storleken av ytan i ett begränsat område. Första uppgiften denna sista lektion gick ut på att beräkna arean på en oregelbunden figur. Detta klarade majoriteten galant med totalt sju olika lösningsstrategier på 25 elever! (Se bilaga 3).

"Den kanske viktigaste faktorn för att eleverna ska kunna utveckla sin matematiska förmåga är att de förstår matematiska begrepp. Ett sådant begrepp har en vidare innebörd än en matematisk term. Begrepp omfattar principer, idéer, erfarenheter, föreställningar mm, ofta kring konkreta saker eller situationer. I kursplanen för matematik står förståelse av talbegrepp, geometriska begrepp, statistiska begrepp samt algebraiska begrepp som mål att sträva mot”. (Berggren, Lindroth, 2004, s. 84)

Vi trodde, med vår undervisningsplan väl genomarbetad för alla eventualiteter, att vi skulle vara förberedda och att vi hade gett eleverna de förutsättningar som de behövde för att nå sin förståelse av begreppet area. Vi och även läraren var av den uppfattningen, att merparten av eleverna hade nått, om inte total förståelse, så åtminstone tillräckligt stor för att kunna lösa areauppgifter av olika typer utan större problem eftersom de kände till vad area var och hur det räknades ut. De klarade av att skapa egna problem som kompisarna skulle lösa och de hade roligt när de jobbade med detta. Även den utvärdering som eleverna fick göra dagen innan, visade att majoriteten av eleverna då visste vad area var och vilken formel som används till de olika geometriska figurer som vi hade gått igenom och arbetat med.

Hur kan den förståelse som finns i början av lektionen när eleverna arbetar med geometriska figurer på lösa papper, försvinna när de öppnar matematikboken och ställs inför uppgifter snarlika de som de tidigare framgångsrikt löst? Beror det på matematikbokens utformning
eller behöver de mer träning innan förståelsen övergår i förtrogenhet? Kunde de inte hantera förståelsen för begreppet när de kom i denna nya situation som matematikboken innebar?

6.2.1 Läromedlets roll i undervisningen

"Bland de geometriska begreppen finns självfallet omkrets, area och volym. Av dessa är omkrets det begrepp som eleverna har lättast att koppla till egna erfarenheter. De två- och tredimensionella begreppen area och volym är betydligt svårare för eleverna att skapa eller se inre representationer för. ... Förklaringen att area är storleken av en yta kan verka formell och teoretisk för många elever. Ytterst få elever har erfarenheter av att mäta en yta." (Berggren, Lindroth, 2004, s. 84)

Belägg för detta upplevde vi i den empiriska undersökningens första del, då flertalet elever hade problem med att skilja area från omkrets. Begreppet omkrets var de bekanta med sedan tidigare. De hade svårt för att förstå att det var ytan innanför omkretsen som var arean. Kan det vara så att efter ytterligare sex lektioner var areabegreppet fortfarande för formellt och teoretiskt, och det var därför eleverna blev så förvirrade när matematikboken kom fram?

"Om då arean som begrepp inte har någon inre representation, blir det betydligt svårare att se logiken i det resonemanget. 'Särskilt intressant är det att följa sådana elever som börjar med att beräkna en area korrekt men sedan blandar in omkretsen i beräkningen. De har en begynnande begreppsbildning som inte är helt färdig.' Detta är ett sympatiskt sätt att se på en lösning som inte är korrekt. Det pekar på möjligheterna och vad eleven kan istället för på bristerna." (Berggren, Lindroth, 2004, s. 84-85)

även hos flera andra elever, vilka dock inte var lika långt framstötta i sin förståelse för areabegreppet som föregående elev.

6.2.2 Matematikundervisning

Detta arbetssätt genomsyrade vår lektionsplan då vi ville att barnen skulle komma till egna insikter utan att bli påverkade av oss. Vi var också intresserade av att få en inblick i hur eleverna tänkte och deras förståelse för begreppet area.

6.2.3 Det egna språkets vikt för förståelse

Berggren, Lindroth (2004) anser att eleverna måste ha kunskap om det matematiska språket för att kunna sätta egna ord på sina problemlösningsstrategier, detta för att kunna förklara för omgivningen hur de har gått tillväga när de har löst uppgifterna. Om det matematiska språket saknas, ställer det till problem när de ska dokumentera lösningarna skriftligt. En korrekt användning av det matematiska språket är dock inte det viktigaste i början av inlärningsfasen. ”Det viktiga är att de förklarar hur de gjort för att tydliggöra lösningen, inte minst för sig själva.” (s.90)

Tanken med utvärderingarna var att vi skulle få en inblick i hur mycket eleverna förstått, men vi ville också att de skulle sätta ord på sina egna tankar, och på så sätt få ökad förståelse för hur de själva tänker och som en liten repetition på det de just jobbat med.

En annan elev förklarade arean som: Area är hur mycket det får plats i en figur, alltså ytan på figuren.

”Många elever upptäcker att den matematiska betydelsen av ord inte alltid stämmer överens med deras uppfattning om vad ordet betyder. Några sådana ord som vi ofta möter inom matematiken är negativ, volym, rymmer, skala, uppskatta, sida och rät. Beroende på sammanhanget kan dessa ord ha vitt skiljda betydelser.” (Berggren, Lindroth, 2004, s. 93-94)

6.2.4 Laborativ matematik

Laborativ matematik är ett diagnostiskt sätt att arbeta på. Läraren får en tydlig inblick i elevernas kunskaper och brister. Även deras tankesätt gällande matematik och de lösningsstrategier som används framgår tydligt genom det laborativa arbetssättet. Detta arbetssätt kräver att eleverna kommunicerar och argumenterar både med varandra och med läraren, till skillnad från den mekaniska räkningen som uppstår när enbart matematikbok används i matematikundervisningen. Läraren kan då tidigt upptäcka om elevernas strategier är
kunskapsutvecklande eller om de hindrar eleverna i deras inlärning. Information som denna är svåråtkomlig vid mekanisk räkning, men väldigt viktig för lärarens undervisning.

6.2.5 Vardagserfarenheter-skolkunskaper

Ett av lektionspassen genomfördes ute på skolgården. Där fick eleverna i uppgift att leta upp tre stycken geometriska former att räkna ut areaen på. Innan de gjorde detta skulle de uppskatta längdmått och area för att sedan mäta och anteckna, detta för att senare räkna ut areorna i klassrummet. Vid genomgången på tavlan framgick det tydligt att eleverna verkade ha lättare för att se och hitta kvadratiska former än cirklar, än mindre trianglar, vilka fanns i färdigritatade former på marken. Genomgången visade också att eleverna i de flesta fall hade lyckats bra med att uppskatta de mått de sedan mätt.

Dysthe (1996) tar upp vikten av "... att eleverna är intresserade av och engagerade i det innehåll, det ämne och de frågeställningar som utgör temat för en undervisningsfrekvens". (s.238)

Även läraren måste vara engagerad i undervisningen, tycka att ämnet och läromedlen är intressanta. Det är även av stor vikt att läraren vågar släppa taget om böckerna och vågar undervisa med konkreta material.

Dysthe menar också att en förutsättning för att få eleverna engagerade i undervisningen är att låta dem veta att deras åsikter räknas och är viktiga men även att läraren tydligt visar detta för dem i klassrummet. En annan viktig förutsättning är att det tydligt framgår för eleverna att det

Vår tolkning, av Lpo94:s mål att uppnå i grundskolan, där ett av målen är att eleverna ska kunna behärska grundläggande matematiskt tänkande och även kunna tillämpa det tänkandet i sin vardag, är att alla elever har rätt till undervisning som främjar deras förståelse för olika matematiska begrepp. Därför är det viktigt att eleverna har tillgång till material som passar deras personliga inlärningsstil detta för att de ska nå maximal individuell förståelse.

6.2.6 Variation

Vi tog fasta på Gudrun Malmers (2002) påstående om att eleverna får en bättre inlärningsmöjlighet om de får röra på sig istället för att sitta still i bänken, och anpassade vår lektionsplanering så att eleverna fick varierande undervisning där de både satt vid sina bänkar vid vissa moment men under andra moment fick röra sig i klassrummet och ute på skolgården.
7. Slutsats
Genom att använda oss av konkret och varierande material i vår undersökning trodde vi att elevernas förståelse skulle befästas på ett varaktigt sätt. Våra övningar, diskussioner i klassrummet och utvärderingar gav oss en inblick i elevernas ökande förståelse för areabegreppet, men det visade sig sedan att alla elever inte hade den förståelse vi trott att de hade uppnått. Detta blev tydligt när matematikboken plockades fram och eleverna på egen hand skulle lösa utvalda uppgifter. Då visade det sig fungera på ungefär hälften av eleverna i undersökningsgruppen, som vid undersökningens slut kunde lösa uppgifter i matematikboken utan genomgång eller hjälp från pedagogerna i klassrummet.

Den andra halvan gav sken av förståelse för det matematiska begrepp vi behandlat, men de kunde inte räkna ut arean på de figurer som avvek från det mönster som de sedan tidigare kommit i kontakt med i vår undervisning. Några visste inte vad area var, andra kunde inte längre räkna ut en fyrhörnings area när den var placerad på ett sådant sätt att en sida inte låg horisontellt. En fyrhörning stod på ett hörn (eleverna tolkade denna figur som två ihopsatta trianglar) och de ritade då till ”nya” fyrhörningar– som de gjorde på trianglarna, när de skulle räkna ut arean på figuren.

8. Förslag till fortsatt forskning
Varför blev elever, som med konkret material uppvisade förståelse för begreppet area, blockerade och plötsligt okunniga om area när matematikboken öppnades?

– Skulle en undervisning där man varvar matematikbokens uppgifter med mer praktiska övningar göra det lättare för eleverna att gå från förståelse till förtrogenhet?
9. Sammanfattning

Studien handlar om barns förståelse för matematik, i detta fall areabegreppet. Vi ville undersöka om konkret undervisning med praktiska och verklighetsnära material, underlättade för eleverna att få mer varaktig förståelse gentemot den litteratur vi använt oss av ofta tar upp, nämligen den mekaniska räkningen som det ofta leder till när endast ett läromedel används i undervisningen. På grund av lärarnas ökade arbetsbörda och tidsbrist vågar de inte frångå läromedlen utan baserar hela matematikundervisningen på matematikboken. Ofta är uppgifterna likartade genom varje kapitel vilket gör att eleverna kan överföra samma mall från uppgift till uppgift, det behövs variation annars tröttnar de snabbt.

Vår studie byggde på en undervisningsplan på sju lektioner, där vi hade satt ihop ett program som vi hoppades skulle ge eleverna en mer varaktig förståelse, samtidigt som vi genom utvärderingar och observationer följde barnens utveckling dit.

Studien visade att eleverna hade fått förståelse eftersom de med framgång löste de uppgifter vi gav dem men även de uppgifter de gjorde till varandra på ett kreativt sätt. De visade stort engagemang och arbetsglädje inför de uppgifter vi tagit fram. Även utvärderingarna visade på ökad förståelse allt eftersom vår undervisning fortskred. Därför var förvåningen stor hos oss och läraren när många elever satt oförstående med matematikboken framför sig.
10. Referenslista

Bilaga 1.

Lektionsplanering

Lektion 1

- Presentation av oss själva.
- Introducering av begreppet Area.

- Skriv area på tavlan
- Låt eleverna diskutera med varandra vad area betyder för dem, vad de tror att area är och vad det används till.
- Skriv upp på tavlan, som en tankekarta, elevernas tankar om area.

Gruppuppgift, 2 och 2.

Övning 1:
"Kvadrater i kvadraten"
- Hur stor är areaen?
- Hur räknar vi ut den?

Övning 2:
Ge eleverna färdiga kvadrater och rektanglar att räkna ut area på. (Bägge fig. har samma area, hur resonerar de när de upptäcker detta?)
- Hur räknar man ut areaen på figuren?
- Hur kan de ha samma area när sidorna är olika långa på kvadraten och rektangeln?

Efter dessa två övningar – diskutera och gå igenom gemensamt hur area räknas ut.

Skriftlig utvärdering: "Vad har jag gjort/lärt mig idag?"
(Vårt mål med lekt. 1 är att eleverna ska veta hur man räknar ut areaen)

Lektion 2

- Repetera areabegreppet
- Diskutera i klassen.

Övning individuell uppgift

- Räkna ut valfria areor i klassrummet, ex pärm, stol, pennor m.m. Så många som de hinner.
- Skriv upp vilket föremål som mäts, vilka mått det har och vad area blir.
- Lämna in till oss.
Lektion 3

- Repetition på tavlan – hur räknar man ut arean på en □ och på en ⬝ ?
 Vad är det man räknar ut?

- Introducera △ - Låt dem gissa först hur man kan räkna ut arean.

 Viktigt! cm på längdmått (48 cm)
 cm² på areamått. (48 cm²)

Utvärdering: Låt eleverna rita och visa på papper hur de räknar ut arean på de tre olika figurerna.

Lektion 4
Individuell uppgift

- Leta upp givna areor i klassrummet. (Använda elevernas egna mätningar från lekt. 2)
 - Diskutera vad de har kommit fram till.
 - Vilka är föremålen?
 - Finns det andra föremål förutom det ”förutbestämda” som har samma area?

Lektion 5

- Två olika trianglar, △ och △. Låt eleverna räkna ut arean.

Gruppuppgift, 2 el 3 i varje grupp

- Hitta största och minsta arean ute på skolgården. (”Färdiga” föremål, ex. bollplan, pingisbord m.m. Inte hitta på egna!) Använd cm – t ex 1.30m =130 cm.
 - Välj tre föremål, uppskatta längdmått och area först – mät sedan och räkna ut arean.
 - Diskutera, i klassrummet, största/minsta areorna.

Material: Linjal och måttband eller 1-meters snören.
Lektion 6

- Genomgång △ igen. Använd färdigritade – rita upp kvadrat, klipp bort det vid sidorna och visa att det bortklippta är lika mycket som triangeln genom att lägga delarna ovanpå triangeln.

- Eleverna ska göra egna ”problem”, som ska lösas av kompisarna.

(Vi vill se om de har förståelse om area för att själva kunna komma på uppgifter.)

Utvärdering: Hur skulle du förklara för en elev i åk 3 vad area är och hur man räknar ut den?
- Skriv/rita på ett papper och förklara.

Lektion 7

Oregelbundna geometriska figurer.

- Hur kan man räkna ut area på en sådan här figur?

Nu ska eleverna kunna jobba i matematikboken, kap Area, utan genomgång. Vi väljer ut tre uppgifter, som är snarlika de vi har jobbat praktiskt med.

(För att se om de har den förståelsen om begreppet area som krävs för att kunna lösa uppgifterna.)

Utvärdering: Hur var det att jobba i matematikboken? Hur var det att jobba utan matematikbok?
Vilket var svårast/lättast? Skriv och berätta på löst papper.
Bilaga 2.
Bilaga 3

Rektangel
3x27 cm = 81 cm²

Kvadrat 9x9 cm = 81 cm²
Bilaga 4.
Bilaga 5.