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Abstract: In this paper, we propose a novel framework for the analysis of task-related heart rate
variability (HRV). Respiration and HRV are measured from 92 test participants while performing
a chirp-breathing task consisting of breathing at a slowly increasing frequency under metronome
guidance. A non-stationary stochastic model, belonging to the class of Locally Stationary Chirp
Processes, is used to model the task-related HRV data, and its parameters are estimated with a novel
inference method. The corresponding optimal mean-square error (MSE) time-frequency spectrum
is derived and evaluated both with the individually estimated model parameters and the common
process parameters. The results from the optimal spectrum are compared to the standard spectrogram
with different window lengths and the Wigner-Ville spectrum, showing that the MSE optimal spectral
estimator may be preferable to the other spectral estimates because of its optimal bias and variance
properties. The estimated model parameters are considered as response variables in a regression
analysis involving several physiological factors describing the test participants’ state of health,
finding a correlation with gender, age, stress, and fitness. The proposed novel approach consisting
of measuring HRV during a chirp-breathing task, a corresponding time-varying stochastic model,
inference method, and optimal spectral estimator gives a complete framework for the study of
task-related HRV in relation to factors describing both mental and physical health and may highlight
otherwise overlooked correlations. This approach may be applied in general for the analysis of
non-stationary data and especially in the case of task-related HRV, and it may be useful to search for
physiological factors that determine individual differences.

Keywords: locally stationary chirp processes; non-stationary signals; optimal time-frequency
estimate; regression analysis; task-related HRV; Wigner-Ville spectrum

1. Introduction

Extensive research has been dedicated to understand and describe the complex interplay of factors
that affect heart rate variability (HRV), the physiological phenomenon of the variation in the time interval
between consecutive heartbeats. The dynamic task-specific vagal control of the heart represented by
task-related HRV changes is especially valuable in exploring the flexible adaption of the organism to
physical and mental challenges [1,2]. Age has been identified as the most critical variable affecting
HRYV, with the spectral power of HRV decreasing with increasing age [3-5]. Nevertheless, several other
variables play a role, such as gender, body-mass index (BMI), anxiety and stress levels [6,7].

State-of-the-art spectral methods have been widely applied in the analysis of HRV, especially
the periodogram and the Welch method [8]. These methods are suitable for HRV data measured
in resting conditions, and for extracting the traditional high-frequency and low-frequency HRV

Appl. Sci. 2019, 9, 5154; d0i:10.3390/app9235154 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5871-8192
https://orcid.org/0000-0002-2921-3945
http://www.mdpi.com/2076-3417/9/23/5154?type=check_update&version=1
http://dx.doi.org/10.3390/app9235154
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 5154 20f 16

power measures. However, these measures often do not provide accurate results in task-related HRV
measurements [2,9,10]. Task-related HRV data are usually non-stationary signals and therefore require
time-frequency (TF) spectral estimators, e.g., the spectrogram or other Cohen’s class TF smoothing
kernel estimators, which allow for capturing changes in the spectral power and frequency content
over time [11]. For HRV estimation, generally smoothed kernel estimators are applied to capture the
TF variations [2]. Other approaches include wavelet based TF analysis [10], as well as time-varying
multitaper spectral analysis in order to decrease the variance of the estimate [12]. In recent years,
several studies investigated and challenged the traditional high-frequency and low-frequency HRV
power measures, not suitable for time-varying signals [13].

A crucial factor influencing HRV is the respiratory sinus arrhythmia (RSA), i.e., the fluctuation in
the heart rate corresponding to breathing, through which the heart rate increases during inspiration and
decreases during expiration [14]. The respiratory frequency information is of utmost importance in the
analysis of HRV and has been included in several novel approaches. Metronome guided breathing is
used in [15] to investigate the effects of respiration on HRV indices, finding that the breathing frequency
needs to be considered as a contributor when analyzing HRV measures. Moreover, the results in [16]
support that joint analysis of respiration and HRV obtains a more reliable characterization of autonomic
nervous response to stress.

The respiration rate changes with exercise levels and can increase above the traditional
high-frequency band. Therefore new respiration based frequency analysis bands have been suggested
for running and cycling stress testing [2]. Respiration based frequency bands are also considered in the
analysis of HRV in relation to emotion recognition [9], where the respiration frequency is extracted and
used to define a subject-based time-varying frequency band. These studies justify the increased interest
in the estimation of the respiratory frequency from the HRV signal when the respiratory information
is not present [17]. In [18], the HRV is decomposed into a component that is correlated with the
respiratory frequency and one residual component: the latter is found to have more discrimination
power than traditional HRV analysis to monitor mental stress. A similar approach is proposed in [10],
where the heart rate is decomposed into a respiration-locked component and a respiration-unrelated
component using empirical mode decomposition.

In this paper, we propose a stochastic model and its mean square error (MSE) optimal TF spectral
estimator for task-related HRV signals, measured during a novel chirp-breathing task, where the 92 test
participants (TPs) were instructed to increase their breathing frequency accordingly to a metronome.
These measurements allow the examination of the cardiac regulation mediated by the dynamics of the
peripheral nervous system. We investigated the advantages of non-resting HRV recordings with respect
to usual measurements with spontaneous breathing and the consequent use of non-stationary spectral
analysis methods in [13], where the time-frequency marginals of the spectrogram and Wigner-Ville
distribution are extracted and divided into the corresponding low-frequency and high-frequency bands.

Assuming stationarity on a local scale is a practical approach to model a non-stationary signal,
for instance as a Locally Stationary Process (LSP) [19]. We consider an extension of this model,
known as Locally Stationary Chirp Process (LSCP) [20,21], which account for the presence of an
increasing instantaneous frequency in the signals. The proposed inference method divides the problem
into lower-dimensional sub-problems, by using the instantaneous respiratory frequency to estimate
the chirp before proceeding with the estimation of the other parameters from the task-related HRV.
The model parameters can be used both for the evaluation of an optimal time-frequency estimator and
as the response in a regression analysis to investigate the predictive power of physiological variables
over the model parameters. Preliminary results of the regression analysis were presented in a previous
conference paper [22], based on a data-set of 47 TPs. Additionally to extending the data-set, we have
now refined the inference method and included the derivation of the MSE optimal model-based kernel
for the TF estimates.

The paper is structured as follows. The methods are outlined in Section 2, including the
procedure for data acquisition and preprocessing, the mathematical background for LSCPs, the statistical
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inference method and the optimal time-frequency estimator, as well as the regression analysis approach.
In Section 3, the results from the statistical inference are presented, the different time-frequency estimates
are compared, and the significant predictors for each model parameter are discussed. Section 4 is
dedicated to comments on the significance of this work and directions for further research.

2. Methods

2.1. Data Acquisition and Preprocessing

The study was conducted in correspondence with the Helsinki declaration and has been approved
by the central ethical review board at Lund (Dnr 2013/754 and 2010/22). The TPs were volunteers,
not using medicines or suffering from any disease affecting the cardiovascular system, and could
discontinue their participation at any time. Each TP answered a questionnaire to collect information
on their general health. In Table 1, the demographics of the TPs are summarized, showing the median,
mean and standard deviation of the variables.

Electrocardiography (ECG) using disposable electrodes was used to record the heart rate, whereas
respiration was measured with a respiratory belt including a piezo-electric device. The chirp-breathing
task consisted of breathing following a metronome starting at frequency 0.12 Hz and increasing to
0.2 Hz. Both ECG and respiration were recorded at 1 kHz using the ML866 Power Lab data acquisition
system and analyzed using its software LabChart8 (ADInstruments Pty Ltd., Dunedin, OTA, NZ) and
MATLAB (Math-Works, Inc., Natick, MA, USA). The R-waves were detected with LabChart8 and the
time difference between two consecutive heartbeats was used to derive the HRV from the heart rate.

The raw data sequences of both HRV and respiratory data were down-sampled to 4 Hz and the
number of samples in each time-series is 840, corresponding to 210 seconds of recordings. An example
of the respiratory signal and corresponding HRV is shown in Figure 1, where the frequency increase of
the respiratory signal matches with a frequency increase in the HRV. For further processing, the data
sequences are adjusted to zero mean.
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Figure 1. (a) Example of respiratory signal measured in Volt (V) and (b) HRV signal as tachogram, i.e.,
the sequence of the time intervals in seconds (s) between consecutive R-waves, of a subject recorded
during the chirp-breathing task.
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Table 1. Median, mean and standard deviation of the variables among the participants according to gender.

Women Men
(n=43) (n=49)
Median Mean sd Median Mean sd

Age 25 28.05 7.86 27 30.84 10.42
Weight 62 63.56 9.70 79 79.14 10.39
BMI 21.77 21.97 2.70 23.45 24.23 3.05
State Anxiety 33 34.30 7.02 30 31.73 7.76
Trait Anxiety 39 40.25 10.33 33 35.79 9.55
SMBQ 3.05 3.40 1.20 2.59 2.95 1.16

2.2. Locally Stationary Chirp Processes

A zero mean real valued stochastic process X(t), t € [Ty, Ty] C R has covariance C(t1,t2) =
E[X(t1)X(t2)], where E denotes the expected value and t1, ; time points in a time interval [To, T¢] C R.
A LSCP covariance is defined as

t1+ 1o
2

C(ti, ) =¢q ( ) r(th—t2) - f1(t f2), 1)

where g is a non-negative function, also called “power schedule”, r a stationary covariance function
and f7 a chirp covariance function defined by

fi (t,t2) = eim(tlfb)(tl;tz *d)/ )

with m,d € R. This means that the covariance C(t1,t;) is modulated by the chirp f; (¢, t2), whose
frequency varies linearly with a delayed time axis # —d. If f1 (t1,t2) = 1, then Equation (1) reduces
to a LSP covariance [19].

To unequivocally identify an LSCP, the required functions and their parameters must be specified,
and the resulting function C must be positive semidefinite. The proposed LSCP model for the task
related HRV is identified by

C(t,t)=gq(t)-r(t) gim(t=d) (3)

where t = tl;b, T=1 —tp and
q(t) =a-exp (=b-t), )
r(T) = exp (—é ~ Tz) / ©)

with a,b,¢ > 0,t € [0,210] s. The instantaneous power of a process X (t), defined as

P(t) = E[X(t)*] = q(1), (6)

motivates the choice of the function g, see Figure 2. The value of the chirp parameters m,d and the
parameters a, b, c must be estimated from the data.
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Figure 2. Function q fitted to the mean instantaneous power of the 92 HRV time-series.
2.3. Inference Method

Since a closed-form expression of the process distribution is not known, a maximum likelihood
approach for estimating the model parameters is not feasible. In a previous contribution [23],
we addressed the problem of fitting a real-valued LSP to sampled data by proposing the inference
method HAnkel-Toeplitz Separation (HATS). The method hereby described is based on the same
principle of dividing the inference problem into lower-dimensional sub-problems. The estimation
procedure is summarized in Algorithm 1 and described in detail below.

Algorithm 1: Inference for LSCP parameters

Input : Zero mean time-series data, both respiratory signal and corresponding HRV.
Output: Estimated chirp parameters 771, d and estimated LSP parameters 4, b, ¢.

Chirp estimation

1 Estimate the instantaneous frequency of the chirp from the the respiratory signal, by taking the
frequency of maximum power in the chirp range from a TF representation of the signal;

2 Find 71, d and the corresponding covariance matrix £ by fitting the linear chirp to the
instantaneous frequency of the respiratory data;

LSP estimation

s Compute the instantaneous power P from the HRV data;

4 Find 4, b by fitting the model function g to P;

5 Find ¢ by fitting R o Frto Rp = Cscp @ Q where R is the stationary covariance matrix of the
model function r, Cscpy is the estimated sample covariance matrix of the HRV data and Qis
the corresponding Hankel matrix based on the model g with parameters 4, b;

Return : 11,d, 4, b, ¢.

The first step is estimating the instantaneous frequency of the chirp from the respiratory signal,
by taking the frequency of maximum power in the chirp range (frequencies above 0.12 Hz) of the
spectrogram with Hanning window of 128 samples (32 s). The parameters 7z and d are estimated through
a robust least square fitting of the linear chirp mt — md to the estimated instantaneous frequency of
the respiratory signal. A corresponding chirp covariance matrix F; is constructed according to the
model Equation (2), where the covariance matrix values are B (t1,t2) = f1(t1,t2). The estimation of
the chirp from the respiratory signal of each TP allows accounting for the individual differences in the
interpretation of the task of breathing accordingly to the metronome. An example of linear chirp fitted to
the instantaneous frequency extracted from the spectrogram is presented in Figure 3.

At this point, a variation of the inference methods HATS can be used to compute the LSP parameters.
First the function g in Equation (4) is fitted to the instantaneous power estimate P(t) = x2(t), where x(t)
is the zero-mean adjusted HRV at time t, as in Equation (6), obtaining the estimated parameters & and b,
from which the Hankel matrix Q, with values Q (t;,t2) = 4 ((t; + t2)/2), can be calculated.
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The next step is computing the ordinary sample covariance matrix of the HRV data Csem
Thereafter, the Hadamard division of Cgcp by 0 provides the estimate Rp = Cscm @ Q, where
Rr corresponds to a non-stationary covariance matrix with values Rr (t1,t2) =1 (t1 — t2) - f1 (11, t2).
The parameter ¢ is obtained by fitting the model stationary covariance matrix R obtained from
Equation (5), Hadamard multiplied with the chirp matrix Fj, to Rf.

Note that the division by the chirp matrix must be avoided for numerical issues as the chirp
matrix £ contains values close to 0, differently from O, which is a strictly positive matrix.
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Figure 3. (a) Spectrogram of a respiratory signal; (b) Red line is the linear chirp mt — md fitted to the
instantaneous frequency (black dots) estimated from the spectrogram in (a).

2.4. Mean Square Error Optimal Time-Frequency Kernel

The MSE optimal model based TF smoothing kernel can be derived and evaluated once the model
parameters of the LSCP are estimated. In the following, F f denotes the Fourier transform of the
function f.

The Wigner-Ville spectrum (WVS) of an LSP is defined as

W(t w) = /:]E [X (t+ %) X* (t - %)] emiwTdT
= 4() - Fr(w) )

[19,20], and the corresponding ambiguity spectrum as

A6,7) = /j;E (x(t+3)x(t=3)] et
= Fq(0) - (7). ®)
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Any TF representation member of the Cohen’s class can be expressed as
We(t,w) = / / A6, T)D(6, T)e«T0) gz, )

where @ is an ambiguity kernel [11]. In [20], the MSE optimal kernel for circularly symmetric LSPs
with Gaussian marginals has been derived as

_ |A(6, 7))
®0(0.7) = 5 AW, O+ B, 7)) 10)
with
|A(6,7)> = | Fq(0)*]r(7)[%,
B(9,7) = (Flr[*(0))(F ! Fql*(1)). (11)

The separable functions in Equation (11) are calculated according to the introduced model Equations (4)
and (5) as

r(r)P = e~/

7

Fir(0) = | L0,
+00
_ (~b—i0)r g, _ _ @
Fq(6) /0 ae dt b’
2 2
» | a _a
Fa(®) _‘b—i—ie TRt
f-—l‘f |2(T) — ]_——1 L — ﬁe—b\r\
1 rer) 2

The modification of the LSP kernel for LSCP is based on the fact that if a signal gy () is multiplied
as g(t) = go(t) - ¢"(3)? then the WVS is coordinate transformed as W(t,w) —» W(t,w—m-t).
From [20], we accordingly find the optimal kernel to become

D0,7) =90 —m-T,7T). (12)

The multitaper approach allows efficient estimation as a weighted sum of windowed spectrograms

2
] , (13)

with weights wy, and windows hi(t), k = 1...K, given by the eigenvalues « and eigenvectors g
respectively solution to

We(t, w) = E / X(s)E( — s)e i ds

K
) w
k=1

/Oo ‘Y"’t(s,t)q(s)ds = uq(t), (14)

—00

where the Hermitian rotated time-lag kernel is defined as

Yrol(s, ) = ¥ (Szﬂs - t) ) (15)
with o ‘
Y(t7) = / ®(6, 7)e"do (16)

as in [20,21].
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2.5. Regression Analysis

We performed a regression analysis [24] to search for the physiological factors that determine
individual differences in the LSCP model parameters, exploring the predictive power of several
physiological factors of interest: Gender (male, female), Age (years), Weight (kg), BMI (kg/m?),
State and Trait scores from the Spielberg State-Trait Anxiety Inventory (STAI) [25] and score in the
Shirom-Melamed Burnout Questionnaire (SMBQ) [26-28]. Previous studies have validated the Swedish
version of the STAI [29-31] and the SMBQ [32,33]. It is interesting considering both STAI and SMBQ
measures since burnout consists of a combination of physical fatigue, emotional exhaustion, and
cognitive weariness, not interchangeable with depression and anxiety [33,34].

The numerical variables were also modelled as categorical. We describe those that became
relevant in the analysis. The categorical variable Age Groups divides the TPs in three categories
of age: 20-30, 3040, and over 40 years old. The categorical variable Stress, based on the value of
SMBQ, divides the TPs into the following three groups: Low-Stressed (SMBQ < 1); In-Between
(SMBQ € [2.75,3.75)); pre-stage Exhaustion Disorder (Pre-ED, SMBQ > 3.75). The variable Fit, based
on BM]I, has the following standard levels: Underweight (BMI < 18.5); Normal (BMI € [18.5, 25));
Overweight (BMI € [25,30)); Obese (BMI >= 30).

Simple regression (i.e., regression models with a single explanatory variable) was tested first to
isolate the effect of every factor, and then multivariate models were evaluated based on the statistical
significance of the predictors (significance level of 0.1), the adjusted coefficient of determination R> dir
and the Akaike Information Criterion (AIC). Regression diagnostics included residual analysis, F-test
for testing inclusion of variables, detection and treatment of outliers and influential observations.

3. Results and Discussion

3.1. Inference on the Model Parameters

The optimization steps in Algorithm 1 for estimating the parameters 4, b, c were constrained so
thata € (0,5], b € (0,1], c € (0,10]. In Table 2, we report the mean, median, standard deviation
and coefficient of variation ¢, of the individually estimated LSCP parameters for the 92 TPs (LSCP;).
These values can be compared with the parameters estimated from a common LSCP (LSCP.) with 92
realizations, giving one set of parameters for all TPs. These parameter estimates are similar to the
medians and means of the LSCP; parameters, with the exception of the parameter b related to the rate
of the instantaneous power decrease during the chirp-breathing task, whose mean is almost 3 times
larger than the median. The parameters with larger variations are those that determine the strongest
individual differences among TPs.

Table 2. Median, mean, standard deviation and coefficient of variation ¢, of the estimated LSCP;
parameters, and the estimated LSCP, parameters for the 92 TPs.

LSCP; LSCP,

Parameter Median Mean sd Cy

0.0003 0.0003  0.0001  0.3139 0.0003
—396.36 —379.16 6871 —0.1812 —402.62
0.0111 0.0155 0.0162  1.0423 0.0126
0.0052 0.0146  0.0462  3.1709 0.0043
4.2023 39032  1.8951  0.4855 5.6208

a o ol

3.2. Comparison between Time-Frequency Estimates

The MSE optimal eigenvectors and eigenvalues, corresponding to multitapers and weights of the
MSE optimal LSCP, spectral estimator, are shown in Figure 4. These will in general differ from the MSE
optimal eigenvectors and eigenvalues based on the individually estimated parameters, used for computing
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the MSE optimal LSCP; spectral estimator, an example of which can be seen in Figure 5. In particular,
the number of eigenvalues significantly different from zero varies depending on the parameters.

In Figure 6, we present examples of TF estimates for three TPs, obtained with the spectrogram
with 64 samples Hanning window (16 s) S64, the spectrogram with 256 samples Hanning window
(64 s) 5256, the Wigner-Ville spectrum WVS, the MSE optimal LSCP, spectrum, and the MSE optimal
LSCP; spectrum. The number of tapers K used for computing the LSCP; spectrum is dependent on the
individual parameters. In the examples shown in Figure 6, K is equal to 10, 19, 3 for Ex. 1, Ex. 2, and
Ex. 3 respectively.

(a)

0.1
0.08
0.06
0.04
0.02 ,

0.4

0.2

-0.2

0 30 60 90 120 150 180 210
time (s)

Figure 4. MSE optimal (a) eigenvalues and (b) eigenvectors, with K = 4, corresponding to weights and
multitapers of the MSE optimal LSCP, spectral estimator.
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Figure 5. An example of (a) eigenvalues and (b) eigenvectors, K = 7, corresponding to weights and

multitapers of the MSE optimal LSCP; spectral estimator, based on individual parameter estimates.

The longer window spectrogram 5256 offers a lower temporal resolution, compared to the shorter
window spectrogram S64, while the opposite holds for the frequency resolution. Additionally to the
resolution trade-off, the spectrogram suffers from a large variance, which is a significant problem
when the estimate is based on a single realization of the underlying process, see the panels in the first
two rows of Figure 6. The typical cross-terms of the WVS, large oscillating terms located in between
the actual signal components, are visible in the panels in the middle row of Figure 6. By construction,
the MSE optimal spectral estimators minimize bias and variance of the spectral estimates for LSCPs.
LSCP; is preferred for capturing features that vary between the TPs, see panels in the last row of
Figure 6. On the other hand, the LSCP, parameters are more robust than the individually estimated
ones. This must be taken into account when the spectral estimates are used for extracting further
features, e.g., frequency bands content from the time-frequency marginals or other spectral measures.
It is worth noticing that for non-stationary signals of this kind, spectral measures such as the power in
the low- and high- frequency bands and their ratio have limited interest, since the spectral content of
the chirp signal is found above 0.12 Hz, which is above the usual low-frequency band.
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Figure 6. Examples of the TF estimates obtained for three TPs with the spectral estimators considered:
564 (first row); S256 (second row); WVS (third row); the MSE optimal LSCP, spectrum (fourth row);
the MSE optimal LSCP; spectrum (fifth row). All the spectra for one TP are in the same column.

3.3. Regression Analysis

In the following, we report and discuss the regression analysis results for the LSCP parameters.

3.3.1. Parameter m

The chirp parameters m and d determine the linear chirp describing the instantaneous frequency
increase of the respiratory signal. These values differ among the TPs as a result of the individual
interpretation of the chirp-breathing task.

The significant predictors of m in simple regression models are Age, State, Trait, and SMBQ. When
considering multiple regression models including the predictor Age, only SMBQ is still significant,
whereas the variables State and Trait cease to be significant. On the other hand, the variable Gender
becomes significant in models including Age. The best multiple regression model according to both
AIC and Rg di values includes Gender, Age, and SMBQ and achieves Rg g = 0.63 (Table 3). According
to this model, an increase in age corresponds to an increase in the value of m. An opposite effect on m
is given by being male respect to female and having a higher SMBQ.
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Table 3. Regression model for parameter m.

Coeff. Est. S.E. p-Value

Gender (M) —2.826x107° 1.322x107° 0.0353
Age 8.156 x107® 7310 x 1077 <2x 10716

SMBQ —1.175x 107>  5.760 x 10~° 0.0443

3.3.2. Parameter d

The significant covariates in simple regression models for the parameter d are the same as for
m, a fact that relates to the correlation between the two chirp parameters. None of the variables is
still significant in multivariate models including the variable Age, therefore the selected model for d
includes only the variable Age, with R2 g = 0-59 (Table 4).

For both m and d, even more explanatory than the numerical variable Age is the categorical
variable Age Groups, that alone achieves Ridj = 0.79 and Ridj = 0.73 for m and d respectively.
According to these models, being over the age 40 is what matters in affecting the value of the chirp
parameters. However, only 10 TPs are older than 40 years, limiting the reliability of the last result.

To understand the meaning of the chirp parameters, a person older than 40 years would typically
have the chirp parameter m approximately the double of the average values (i.e., m ~ 0.0006) and the
parameter d, representing the chirp delay, about half of the average value (i.e., d = —200). These values
correspond to an angular coefficient of the estimated linear chirp twice as large of the typical one, as a
result of a steeper instantaneous frequency increase of the respiratory signal and consequently of the HRV.

Table 4. Regression model for parameter d.

Coeff. Est. S.E. p-Value
Age 5.6738 0.4896 <2 x 10716

3.3.3. Parameter a

The parameter a corresponds to the power at time zero, with a larger value of a corresponding to
higher power, and it represents the amplitude multiplier that scales the exponential function. We consider
the logarithmic transformation of 4 in the regression models to avoid positively skewed residuals.

Only the covariate Age is a significant predictor when considering models with a single
explanatory variable. The regression model with only Age as predictor achieves R2 gj = 024 The same
R? g is obtained with the categorical variable Age, with all Age groups significantly different from the
baseline. The strong correlation of the scaling parameter a with the variable Age is expected, since it is
known that the HRV power decreases with age.

In multivariate models, both Age and Stress play a role, and the best predictive model includes
them as categorical variables with Ridj = (.27 (Table 5). According to this model, the value of log(a) is
affected similarly by being in the age group 3040 years old, compared to the baseline 20-30 years old,
and having an SMBQ value compatible with pre-ED.

The fact that both Age and Stress are significant predictors of the value of log(a) with a similar
effect (negative slope and same scale) suggests an analogy between the effect of aging and higher
stress levels on the HRV instantaneous power. However, being in the age group over 40 years old has
a 3.5 times stronger effect than having an SMBQ value compatible with pre-ED.
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Table 5. Regression model for log(a).

Coeff. Est.  S.E. p-Value
Age 30-40 —0.5222  0.2294 0.0253
Age > 40 -1.8662 03121 4.81x 1078
Stress (In-Between) —0.3341 0.2297 0.1494
Stress (Pre-ED) —0.4953 0.2284 0.0328

3.3.4. Parameter b

The value of b is related to the rate of the power decrease consequent to the increase in breathing
frequency. The estimates of the parameter b show considerable large variability among the TPs,
as indicated in Table 2. A higher value of b corresponds to a faster power decrease and does not
point to a fault in the estimation; however, this large variability prevented the regression models from
achieving high values of Ridj'

The only significant covariate in simple regression models is SMBQ. Step-wise model selection
based on AIC led to a model including only SMBQ (Table 6), which however has a very low value of
R2 g = 002, reflecting the fact that much of the variability of the parameter b remains unexplained.
After outliers and influential observations treatment, leading to the removal of 4 TPs, also the variables
Gender, Age and Stress become significant in simple regression. The best multivariate model after
removal of the 4 outliers has the covariates Gender, Age and Stress, with only the category pre-ED
significantly different from the baseline (Table 7). This model has a higher R? gj = 011

Table 6. Regression model for parameter b.

Coeff. Est. S.E. p-Value
SMBQ —0.007082 0.003994 0.07959

Table 7. Regression model for parameter b after removal of 4 outliers.

Coeff. Est. S.E. p-Value
Gender (M) 1.646 x 1073 7.959 x 10~%  0.0417
Age —-1.037 x 107* 4429 x 1075 0.0215

Stress (Pre-ED) —1.898 x 1073 8.653 x 10~*  0.0310

3.3.5. Parameter ¢

The parameter c relates to the local stationarity of the underlying stochastic process, with smaller
values of ¢ indicating a long-lasting autocorrelation. Conversely, a larger value of the parameter
c corresponds to a smaller standard deviation of the Gaussian bell in Equation (5), meaning faster
decaying autocorrelation of the process.

In simple regression, all the variables Gender, Age, Weight, BMI, Fit, State, Trait, SMBQ and
Stress are significant predictors of the parameter c. The step-wise selected multivariate model includes
Gender, Age, and Fit, with only the category Obese significantly different from the baseline category
Normal Weight (Table 8). This model has a coefficient of determination Rg 4 = 0.25.

The most significant and clear predictor is Age, which has an effect of decreasing the value of
c of 0.063 for each year of age. Fitness levels and being Male respect to Female have stronger effect
than Age but they are not equally significant. It should be noted that Gender and BMI are correlated,
with men having higher BMI than women, and recent studies suggest that the traditional BMI value
might not be a good indicator of the fitness of a person.
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Table 8. Regression model for parameter c.

Coeff. Est. S.E. p-Value

Gender (M) —0.85140 0.36593  0.02233
Age —0.06354  0.01897  0.00121

Fit (Underweight) 1.59192 0.97033  0.10453
Fit (Overweight) —0.12594  0.43446 0.77262
Fit (Obese) —2.43821  0.98378 0.01515

4. Conclusions

In this paper, we propose a time-varying stochastic model, based on the definition of LSCPs,
for task-related HRV measured during a novel chirp-breathing task. The proposed inference method
allows the evaluation of the MSE TF spectrum, derived from the proposed stochastic model, using either
individual model parameters or the parameters estimated from a common process. For comparison,
other TF spectral estimates are computed, namely the spectrogram with different window lengths
and the WVS without any smoothing kernel. The MSE optimal spectral estimator evaluated with the
estimated parameters minimizes bias and variance of the spectral estimates for LSCPs, and therefore its
use is preferable for extracting further features from the spectral estimates.

The LSCP model parameters are used as response variables in a regression analysis using
several physiological covariates as predictors. The regression analysis shows correlation of the LSCP
parameters with gender, age, levels of stress and fitness. The presented results are consistent with
those of more extensive studies examining the relationship between HRV and physiological variables.
Since each model parameter relates to a different aspect of the underlying LSCP, this approach may be
useful to search for physiological factors that determine individual differences in the HRV.

The proposed complete framework for the study of task-related HRV in relation to factors
describing both mental and physical health has general validity for the analysis of non-stationary data,
and especially in the case of task-related HRV.

Further research can be addressed to identify new spectral measures to be extracted from the
improved TF estimates since the traditional estimation of the spectral power divided in the low- and
the high- frequency band is of limited interest for time-varying signals.
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Abbreviations

The following abbreviations (in alphabetic order) are used in this manuscript:

AIC Akaike information criterion

BMI body-mass index

ECG electrocardiography

HATS  Hankel-Toeplitz separation

HRV heart rate variability

LSCP  locally stationary chirp process

LSCP. LSCP with parameters estimated from a common process
LSCP;  LSCP with individually estimated parameters



Appl. Sci. 2019, 9, 5154 150f 16

LSP
MSE
RZ
adj
RSA

locally stationary process
mean square error
adjusted coefficient of determination R square

respiratory sinus arrhythmia

SMBQ Shirom-Melamed Burnout Questionnaire

STAI Spielberg State-Trait Anxiety Inventory

S64 spectrogram with 64 samples Hanning window

5256 spectrogram with 256 samples Hanning window

TF time-frequency

TP test participant

WVS  Wigner-Ville spectrum

References

1.  Laborde, S.; Mosley, E.; Mertgen, A. A unifying conceptual framework of factors associated to cardiac vagal

10.

11.

12.

13.

14.

15.

16.

control. Heliyon 2018, 4, €01002. [CrossRef] [PubMed]

Hernando, D.; Hernando, A.; Casajus, ].A.; Laguna, P.; Garatachea, N.; Bailéon, R. Methodological framework
for heart rate variability analysis during exercise: Application to running and cycling stress testing. Med. Biol.
Eng. Comput. 2018, 56, 781-794. [CrossRef] [PubMed]

Jonsson, P; Osterberg, K.; Wallergard, M.; Hansen, A.M.; Garde, A.H.; Johansson, G.; Karlson, B.
Exhaustion-related changes in cardiovascular and cortisol reactivity to acute psychosocial stress.
Physiol. Behav. 2015, 151, 327-337. [CrossRef] [PubMed]

Voss, A.; Schroeder, R.; Heitmann, A.; Peters, A.; Perz, S. Short-Term Heart Rate Variability - Influence of
Gender and Age in Healthy Subjects. PLoS ONE 2015, 10, 1-33. [CrossRef]

Gurel, N.Z.; Carek, A.M.; Inan, O.T.; Levantsevych, O.; Abdelhadi, N.; Hammadah, M.; O’Neal, W.T,;
Kelli, H.; Wilmot, K.; Ward, L.; et al. Comparison of autonomic stress reactivity in young healthy versus
aging subjects with heart disease. PLoS ONE 2019, 14, e0216278. [CrossRef]

Woo, JM.; Kim, TS. Gender Plays Significant Role in Short-Term Heart Rate Variability.
Appl. Psychophysiol. Biofeedback 2015, 40, 297-303. [CrossRef]

Lennartsson, A.; Jonsdottir, I.; Sjors, A. Low heart rate variability in patients with clinical burnout.
Int. ]. Psychophysiol. 2016, 110, 171-178. [CrossRef]

Lindgren, G.; Rootzén, H.; Sandsten, M. Stationary Stochastic Processes for Scientists and Engineers; Chapman
and Hall/CRC: Boca Raton, FL,, USA, 2014.

Valderas, M.T.; Bolea, J.; Laguna, P; Bailén, R.; Vallverdd, M. Mutual information between heart rate
variability and respiration for emotion characterization. Physiol. Meas. 2019, 40, 084001. [CrossRef]

Liu, B.; Yan, S.;; Wang, X,; Xie, L.; Tong, J.; Zhao, F,; Di, X,; Yan, X.; Zhang, J]. An improved method to evaluate
heart rate variability based on time-variant cardiorespiratory relation. J. Appl. Physiol. (Bethesda Md. 1985)
2019, 127, 320-327. [CrossRef]

Cohen, L. Time-Frequency Analysis; Signal Processing Series; Prentice-Hall: Upper Saddle River, NJ, USA, 1995.
Gates, K.M.; Gatzke-Kopp, L.M.; Sandsten, M.; Blandon, A.Y. Estimating time-varying RSA to examine
psychophysiological linkage of marital dyads. Psychophysiology 2015, 52, 1059-1065. [CrossRef]

Anderson, R.; Jonsson, P.; Sandsten, M. Insights on Spectral Measures for HRV Based on a Novel Approach
for Data Acquisition. In Proceedings of the 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17-21 July 2018; pp. 510-513.
[CrossRef]

Billman, G.E. Heart Rate Variability—A Historical Perspective. Front. Physiol. 2011, 2, 86. [CrossRef]
[PubMed]

Weippert, M.; Behrens, K.; Rieger, A.; Kumar, M.; Behrens, M. Effects of breathing patterns and light exercise
on linear and nonlinear heart rate variability. Appl. Physiol. Nutr. Metab. 2015, 40, 762-768. [CrossRef]
Hernando, A.; Lazaro, J.; Gil, E.; Arza, A.; Garzon, J.; Lopez-Anton, R.; De La Camara, C.; Laguna, P;
Aguilo, J.; Bailon, R. Inclusion of respiratory frequency information in heart rate variability analysis for
stress assessment. IEEE |. Biomed. Health Inform. 2016, 20, 1016-1025. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.heliyon.2018.e01002
http://www.ncbi.nlm.nih.gov/pubmed/30623126
http://dx.doi.org/10.1007/s11517-017-1724-9
http://www.ncbi.nlm.nih.gov/pubmed/28948522
http://dx.doi.org/10.1016/j.physbeh.2015.07.020
http://www.ncbi.nlm.nih.gov/pubmed/26210042
http://dx.doi.org/10.1371/journal.pone.0118308
http://dx.doi.org/10.1371/journal.pone.0216278
http://dx.doi.org/10.1007/s10484-015-9295-8
http://dx.doi.org/10.1016/j.ijpsycho.2016.08.005
http://dx.doi.org/10.1088/1361-6579/ab310a
http://dx.doi.org/10.1152/japplphysiol.00125.2019
http://dx.doi.org/10.1111/psyp.12428
http://dx.doi.org/10.1109/EMBC.2018.8512423
http://dx.doi.org/10.3389/fphys.2011.00086
http://www.ncbi.nlm.nih.gov/pubmed/22144961
http://dx.doi.org/10.1139/apnm-2014-0493
http://dx.doi.org/10.1109/JBHI.2016.2553578
http://www.ncbi.nlm.nih.gov/pubmed/27093713

Appl. Sci. 2019, 9, 5154 16 of 16

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Khan, N.A,; Jonsson, P; Sandsten, M. Performance Comparison of Time-Frequency Distributions for
Estimation of Instantaneous Frequency of Heart Rate Variability Signals. Appl. Sci. 2017, 7, 221. [CrossRef]
Choi, J.; Gutierrez-Osuna, R. Removal of Respiratory Influences From Heart Rate Variability in Stress
Monitoring. IEEE Sens. ]. 2011, 11, 2649. [CrossRef]

Silverman, R. Locally stationary random processes. IRE Trans. Inf. Theory 1957, 3, 182. [CrossRef]
Wahlberg, P.; Hansson, M. Kernels and multiple windows for estimation of the Wigner-Ville spectrum of
Gaussian locally stationary processes. IEEE Trans. Signal Process. 2007, 55, 73-84. [CrossRef]
Hansson-Sandsten, M. Optimal Multitaper Wigner Spectrum Estimation of a Class of Locally Stationary
Processes Using Hermite Functions. EURASIP . Adv. Signal Process. 2011, 980805. [CrossRef]

Anderson, R.; Jonsson, P.; Sandsten, M. Effects of Age, BMI, Anxiety and Stress on the Parameters of a
Stochastic Model for Heart Rate Variability Including Respiratory Information. In Proceedings of the 11th
International Joint Conference on Biomedical Engineering Systems and Technologies—Volume 3: BIOSIGNALS;
SciTePress: Funchal, Madeira, Portugal, 2018; pp. 17-25. [CrossRef]

Anderson, R.; Sandsten, M. Inference for time-varying signals using locally stationary processes. J. Comput.
Appl. Math. 2019, 347, 24-35. [CrossRef]

Rawlings, ].O.; Pantula, S.G.; Dickey, D.A. Applied Regression Analysis—A Research Tool, 2nd ed.; Springer:
New York, NY, USA; London, UK, 1998.

Spielberger, C.D.; Gorsuch, R.L. Manual for the State-Trait Anxiety Inventory, STAI (Form Y); Consulting
Psychologists Press: Palo Alto, CA, USA, 1983.

Shirom, A. Burnout in work organization. In International Review of Industrial and Organizational Psychology;
Cooper, C.L., Robertson, L., Eds.; Wiley: New York, NY, USA, 1989; pp. 25-48.

Melamed, S.; Kushnir, T.; Shirom, A. Burnout and risk factors for cardiovascular diseases. Behav. Med. 1992,
18, 53-60. [CrossRef]

Melamed, S.; Shirom, A.; Toker, S.; Berliner, S.; Shapira, I. Burnout and Risk of Cardiovascular Disease:
Evidence, Possible Causal Paths, and Promising Research Directions. Psychol. Bull. 2006, 132, 327-353.
[CrossRef] [PubMed]

Hansen, A.M.; Hogh, A.; Persson, R.; Karlson, B.; Garde, A.H.; Orbaek, P. Original article: Bullying at work,
health outcomes, and physiological stress response. ]. Psychosom. Res. 2006, 60, 63-72. [CrossRef] [PubMed]
Persson, R.; Orbaek, P. The influence of personality traits on neuropsychological test performance and
self-reported health and social context in women. Personal. Individ. Differ. 2003, 34, 295-313. [CrossRef]
Persson, R.; Osterberg, K.; Karlson, B.; Orbeek, P. The Meta-Contrast Technique: Relationships with
personality traits and cognitive abilities in healthy women. Scand. J. Psychol. 2005, 46, 169-177. [CrossRef]
[PubMed]

Grossi, G.; Perski, A.; Evengard, B.; Blomkvist, V.; Orth-Gomér, K. Physiological correlates of burnout among
women. J. Psychosom. Res. 2003, 55, 309-316. [CrossRef]

Lundgren-Nilsson, A. ; Jonsdottir, LH.; Pallant, J.; Ahlborg, G. Internal construct validity of the
Shirom-Melamed Burnout Questionnaire (SMBQ). BMC Public Health 2012, 12. [CrossRef]

Shirom, A. Job-related burnout: A review. In Handbook of Occupational Health Psychology; American
Psychological Association: Washington, DC, USA, 2003; pp. 245-264.

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3390/app7030221
http://dx.doi.org/10.1109/JSEN.2011.2150746
http://dx.doi.org/10.1109/TIT.1957.1057413
http://dx.doi.org/10.1109/TSP.2006.882076
http://dx.doi.org/10.1155/2011/980805
http://dx.doi.org/10.5220/0006512900170025
http://dx.doi.org/10.1016/j.cam.2018.07.046
http://dx.doi.org/10.1080/08964289.1992.9935172
http://dx.doi.org/10.1037/0033-2909.132.3.327
http://www.ncbi.nlm.nih.gov/pubmed/16719565
http://dx.doi.org/10.1016/j.jpsychores.2005.06.078
http://www.ncbi.nlm.nih.gov/pubmed/16380312
http://dx.doi.org/10.1016/S0191-8869(02)00045-4
http://dx.doi.org/10.1111/j.1467-9450.2005.00446.x
http://www.ncbi.nlm.nih.gov/pubmed/15762944
http://dx.doi.org/10.1016/S0022-3999(02)00633-5
http://dx.doi.org/10.1186/1471-2458-12-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Data Acquisition and Preprocessing
	Locally Stationary Chirp Processes
	Inference Method
	Mean Square Error Optimal Time-Frequency Kernel
	Regression Analysis

	Results and Discussion
	Inference on the Model Parameters
	Comparison between Time-Frequency Estimates
	Regression Analysis
	Parameter m
	Parameter d
	Parameter a
	Parameter b
	Parameter c


	Conclusions
	References

