

Independent project (degree project), 15 credits, for the degree of
Bachelor of Science (180 credits) with a major in Computer Science
Spring Semester 2021
Faculty of Natural Sciences

Enhance Inter-service Communication in

Supersonic K-Native REST-based Java

Microservice Architectures

Vincenzo Buono, Petar Petrovic

Author
Vincenzo Buono
Petar Petrovic

Title
Enhance Inter-service Communication in Supersonic
K-Native REST-based Java Microservice Architectures

Supervisor
Fredrik Stridh

Examiner
Dawit Mengistu

Abstract
The accelerating progress in network speeds and computing power permitted the architectural design
paradigm to shift from monolithic applications to microservices. The industry moved from single-core and
multi-threads, code-heavy applications, running on giant machines 24/7 to smaller machines, multi-cores
single threads where computing power and memory consumption are managed very critically. With the
advent of this novel approach to designing systems, traditional multi-tier applications have been broken
down into hundreds of microservices that can be easily moved around, start, and stop quickly. In this
context, scaling assumed a new meaning, rather than scaling up by adding more resources or computing
power, now systems are scaled dynamically by adding more microservices instances. This contribution
proposes a theoretical study and a practical experiment to investigate, compare and outline the
performance improvements aid by the implementation of Protocol Buffers, Google's language-neutral,
binary-based representational data interchange format over traditional text-based serialization formats in
a modern, Cloud-Native, REST-based Java Microservice architecture. Findings are presented showing
promising results regarding the implementation of Protobuf, with a significant reduction in response time
(25.1% faster in the best-case scenario) and smaller payload size (72.28% better in the best-case
scenario) when compared to traditional textual serialization formats while literature revealed out-of-the-
box mechanisms for message versioning with backward compatibility.

Keywords
Enhance Interservice Communication, Protocol Buffers, Data Interchange Formats, Quarkus, Kubernetes

Contents

1 Introduction ... 6

1.1 Problem and Motivation ... 6

1.2 Research Questions ... 7

1.3 Aim and Purpose ... 7

1.4 Limitations .. 8

1.4.1 K8s deployment ... 8

1.4.2 Data interchange formats ... 8

1.5 Ethics .. 9

2 Background ... 10

2.1 Microservices .. 10

2.2 Quarkus ... 11

2.2.1 Supersonic, Subatomic, Java ... 11

2.2.2 Container-First ... 12

2.3 Data interchange formats .. 14

2.3.1 Textual formats .. 14

2.3.2 Binary Formats .. 15

2.4 Protocol Buffers .. 17

2.4.1 Context and Data Separation ... 17

2.4.2 Message Format .. 18

2.4.3 LEB128: Base 128 Varints .. 18

2.4.4 Binary Encoding .. 19

3 Methodology ... 20

3.1 Information Sources .. 20

3.2 Literature Search Criteria ... 20

3.3 Empirical approach ... 21

3.4 Testing environment ... 21

3.5 Analyzed metrics .. 22

4 Benchmarking ... 23

4.1 K8s Local Cluster Environment ... 23

4.2 Quarkus Microservice Deployment .. 23

4.2.1 JVM-Mode Container .. 23

4.2.2 Native-mode Container ... 24

4.3 Supplementary Tools .. 24

4.4 Test design .. 24

4.5 Serialization formats ... 25

4.6 Compression ... 25

4.7 Data Structure complexity .. 26

4.7.1 Flat Approach .. 26

4.7.2 Nested Approach ... 27

4.8 Dummy Data Generation .. 28

5 Results ... 29

5.1 Literature review results ... 29

5.2 Empirical results ... 31

5.2.1 Response time .. 31

5.2.2 Request Processing Time .. 32

5.2.3 Payload size ... 33

5.2.4 Memory analysis ... 34

6 Discussion ... 36

6.1 Research Question 1 ... 36

6.2 Research Question 2 ... 38

7 Conclusion ... 39

7.1 Future Work .. 39

8 References ... 40

Appendices .. 48

Appendix 1: Microservices.. 48

Appendix 2: Docker build ... 50

Appendix 3: Supplementary result materials .. 51

Theoretical work .. 51

Empirical Experiment .. 52

Appendix 4: Source code .. 55

5

Acknowledgments

It is with genuine gratitude and warm regard that I dedicate this work to my whole family

and I express my immense appreciation to my mother and my grandmother for supporting

me along this journey and believing in me. – V. Buono

I would like to express my special gratitude to Sweden, my university (HKR) as well as

our professors who allowed me to finish my studies.

All thanks to my partner, my great friend, Vincenzo Buono for all the teamwork we had

as well as all the contribution he did to make this thesis astonishing.

Lastly, I would also like to thank my parents and friends who helped me and supported

me throughout my studies – P. Petrovic

6

1 Introduction

This study proposes a novel approach to enhance inter-services communication in

modern, cloud-native, container-first, REST-based Quarkus [1] microservice

architectures by improving current, industry-standard text-based representational data

interchange format and serialization technique. The outlined solution aims to improve

Machine to Machine communication through the use of Google's platform-neutral,

language-neutral, binary-based representational data interchange format, formerly

named Protocol Buffers [2]. Throughout the thesis, the keywords Supersonic and

Subatomic, where applicable, may be utilized as a substitute or synonym in reference to

the Quarkus framework, as intended by the Quarkus authors [3]. Quarkus is a

Kubernetes-Native Java stack tailored for OpenJDK HotSpot and GraalVM [1]. The word

K-Native will be adopted during this study and implied as a shorthand for Kubernetes-

Native and intended as a specialization of the Cloud-Native concepts, where applications

are designed and built for Kubernetes specifically rather than deployed directly on the

cloud [4].

1.1 Problem and Motivation

In the past decade cloud computing [5] has seen substantial growth, with REST-based

(REpresentational state transfer) microservices being one of the most adopted service-

oriented architectures (SOA) [6]. With this novel approach of designing a system as a

collection of loosely coupled services, typically hosted on different remote nodes, that

are interconnected through the use of lightweight mechanism over the network [7], the

inter-service communication aspect started to gain attention due to its importance in the

implementation of microservices. Notwithstanding the HTTP protocol capabilities allow

the transmission of both textual and binary payloads, the widespread usage of text

serialization formats such as JSON or XML is predominant over their binary counterparts,

with JSON being the most used serialization format. The broad adoption of JSON has to

be attributed to a multitude of reasons, but most importantly, to the fact that historically

the primary consumer of APIs was a browser [8], where JSON is natively supported and

a first-class citizen in the Javascript client-side programming language [9]. However,

microservices are often implemented in different programming languages [10], running

in different runtimes and environments, or leverage different technology stacks. In

7

addition, a service might not be able to provide a complete solution to a specific request,

and therefore compiling information with other domains may be necessary [11]; in such

scenarios, where the chained microservice design pattern is applied, a single access point

for a specific resource is provided, but its response is composed by aggregating multiple

services' response. In such enterprise scenarios, performance metrics such as payload

size, serialization and deserialization speed, transient memory usage during encoding

(allocated and utilized heap and metaspace memory size), thread utilization and

request/response latency, as well as maintainability factors such as strongly typed and

schema-based data format with improved supports for versioning are essential for the

deployed system to respect the required service-level agreement (SLA) [12,13].

 In this context, it is logical to be questioning whatever the communication between

services can be improved by adopting a platform-neutral, binary-based representational

data interchange format and an improved serialization approach in professional Java

Cloud-native microservice architectures built on top of Quarkus [1] and GraalVM

[14,15].

1.2 Research Questions

The study answers the following research questions:

R1: From a performance standpoint, how can the response time and payload size be

reduced in a modern, Supersonic, Cloud-Native, K-Native REST-based Java

Microservice endpoint?

R2: How can a strongly typed binary-based representational data interchange format

with schema support improve versioning management, data evolution, and migration in

microservices?

1.3 Aim and Purpose

The purpose of this research is to analyze, investigate and enhance inter-services

communication in modern, cloud-native, container-first, REST-based Quarkus [1]

microservice architectures by improving current, industry-standard text-based

representational data interchange format and serialization technique.

The following thesis will discuss in great detail how to improve Machine to Machine

communication through the use of a platform-neutral, binary-based representational data

8

interchange format and an improved serialization approach in professional Java Cloud-

native microservice architectures. Furthermore, findings will be proposed to demonstrate

how the use of Protocol Buffers [2] can enhance such systems by providing a smaller

payload, faster serialization and deserialization, better versioning, and support for typed

data compared to traditional, schema-less data interchange formats such as JSON.

Protocol Buffers are Google's language-neutral, platform-neutral, extensible mechanism

for serializing structured data [2].

1.4 Limitations

1.4.1 K8s deployment

In order to study and investigate the impacts of the usage of a binary-based

representational data interchange format, in modern containerized Quarkus

microservices, the services have to be deployed on a Kubernetes [16] cluster. Deploying

microservices on the cloud, however, especially for benchmarking purposes, can be very

complex as well as very expensive due to the typical pay-per-consume rates, as the

customer typically pays for the computational power that the services use. For this reason,

and also because the research would exceed the scope and thesis constraints, the

microservices have been deployed locally with the use of third-party software to ensure

the validity of the gathered data, as well as the accuracy of the results in a real deployment

scenario. In this regard, KIND (Kubernetes IN Docker) [17] has been adopted to ensure

the portability of the results in the cloud, as described in section 4.1.

1.4.2 Data interchange formats

For the following study has been chosen, as a reference binary-based data interchange

format, Google's language-neutral, platform-neutral, Protocol buffer serialization format.

As shown in section 2.3.2, there are many binary serialization formats, even with faster

serialization speeds than Protobuf, as illustrated in Figure 7. Protocol Buffer has been

chosen among those due to its support and popularity, but most importantly, it is natively

supported by Quarkus as a native extension. Quarkus' native extensions differ from

regular libraries because they can be natively compiled and optimized by the GraalVM

when running as a native executable. Since enhancing inter-service communication is a

9

prerogative of this thesis, it has been recognized to be essential to pick technologies that

do not decrease or degrade the efficiency or performance as it would go against the aim

of this research.

1.5 Ethics

Since the results contained in this thesis can ultimately be utilized either as a consideration

factor during the design of a REST microservice architecture or as a starting point for

further work in the field, it has been determined that the experiments contained in this

study are conducted ethically. In this context, the benchmarks provided along with this

study have been created with the aim to investigate and measure the impact of the

implementation of Protocol Buffers, Google's binary-based representational data

interchange format, over traditional textual serialization formats in a modern, Supersonic,

Cloud-Native, REST-based Java Microservice architecture. With the end goal of

enhancing interservice communication, we specifically limit the scope of our analysis and

testing to the technologies previously discussed, isolating the improvements aid by the

latter from other possible contaminating factors. However, as broadly discussed in section

3.3 and subsequently confirmed by the findings provided in section 5.2, the results

obtained can vary based on the testing environment, on the version of the technologies

analyzed as well as the complexity of the encoded data structures. For these reasons has

been disclosed a public listing of all the technologies and versions used during the

execution of the empirical experiment along with the hardware specification of the testing

rig (see section 3.4).

10

2 Background

In recent years, there has been an increasing interest in cloud computing, with REST-

based microservice architectures being one of the most adopted service-oriented

architectures (SOA) [18]. This novel approach of designing a system as a collection of

loosely coupled services aims to break up traditional code-heavy monolithic multi-tier

application architectures into independently self-contained, deployable services that can

be seamlessly stopped, started, and scaled in the cloud accordingly to the load balancing

demands [8]. Layered architectures, as depicted in Figure 37 (see Appendix 1:

Microservices), have each layer tied to a different service boundary, with each being

related to a specific technical solution; in such scenario, implementation of new

functionalities is expensive and fairly inefficient as changes are often not bounded to a

specific technology stack and therefore span over multiple layers. In contrast, a service

in a microservice architecture is modeled around a business domain and contains end-to-

end slices of business functionalities [8] by encapsulating, where applicable and

necessary, all the layers including, but not limited to, presentation layer, business layer,

persistence layer, and data storage layer as illustrated in Figure 38 (see Appendix 1:

Microservices). Systems built upon the microservice architectural style are designed as

a suite of small interconnected services, each running on its own process, typically within

an orchestration framework, that encapsulates a business functionality that is made

accessible to other services via network [8] through the use of lightweight mechanism

such as, but not limited to, HTTP resource API [7]. Microservices provide their business

functionalities on one or more network endpoints [8] and hand over their resources

serialized into a specific data interchange format that can be deserialized and consumed

by the clients. Typical REST microservices use a text-based representational data

interchange format and serialization technique due to the high compatibility of the latter

in the destination platform that the technology originated and evolved: the web. Current

industry-standard formats are JSON and XML [19].

2.1 Microservices

The microservice architecture has become one of the most adopted and predominant

architectural style in the service-oriented industry [18]. The microservice architecture is

an architectural style designed as a collection of small services that suites large-scaled

11

applications. Attributes such as loose coupling, high cohesion, resilience, and scalability

are typical of microservices architectures.

Services are built upon business functionalities and are platform agnostic, meaning they

are commonly built using numerous programming languages. Microservices often

communicate through HTTP mechanisms such as REST (Representational State

Transfer). Since each service is independent of the other, they do not need to know about

the underlying architecture or the implementation [20,21].

"In short, the microservice architectural style is an

approach to developing a single application as a suite

of small services, each running in its own process

and communicating with lightweight mechanisms, often

an HTTP resource API. [...] Services are independently

deployable and scalable, each service also

provides a firm module boundary, even allowing for

different services to be written in different programming

languages." [7]

2.2 Quarkus

2.2.1 Supersonic, Subatomic, Java

Quarkus [1] is an open-source cloud-native framework with built-in Kubernetes [22]

integration [23]. The open-source stack is often referred to as "supersonic, subatomic" as

Quarkus tailors your applications to minimize boot time with particular attention to the

First Response time, allowing requests to be serviced in the order of milliseconds [24], as

shown in Figure 1. The framework is also optimized to have a small memory footprint,

allowing low main memory or resident set size (RSS) consumptions while producing

small binaries, hence the word "subatomic" in the framework definition, as illustrated in

Figure 2. Quarkus is also polyglot because it provides supports to several JVM languages

12

and, thanks to GraalVM, allows the developers to write polyglot applications that

seamlessly can pass values from one language to another [25] by means of the Truffle

language implementation framework [26].

A Kubernetes Native Java stack tailored for OpenJDK HotSpot and

GraalVM, crafted from the best of breed Java libraries and

standards.[1]

Figure 1 - Quarkus Boot + First Response Time official benchmarks [1]

Figure 2 - QuarkusMemory (RSS) in Megabytes official benchmarks [1]

2.2.2 Container-First

Quarkus has been designed around a container-first philosophy [27], allowing developers

to create, optimize and deploy cloud-native applications in Kubernetes' container clusters

with ease by providing all the previously described advantages.

When deploying a containerized microservices [10], the end goal is to maximize the

number of instances of your application in order to scale and meet the unexpected load

while still utilizing as many of the resources as possible. During the scaling-up process,

in order to fulfill the incoming traffic load, the application's instances need to be up and

running as quickly as possible; Quarkus, by producing small, native executable binaries,

through the use of GraalVM, solves this problem, creating container-native applications

for peak performance [23,24]. Its performance is attributed not solely to the First Class

13

Support for Graal/SubstrateVM [27], but also to the optimized Build Time Metadata

Processing [28] executing as much processing as possible at build-time rather than at

runtime resulting in less memory usage and faster start-times as only the classes that are

needed are loaded into the production JVM. Quarkus also optimizes Reflection [29] by

reducing its usage or, in some instances, even avoiding it altogether. In addition, using a

technique called Native Image Pre Boot [30,31], Quarkus pre-boot as much of the

framework as possible during the native image build process, allowing the resulting

native image to have executed most of the startup code, that otherwise a typical

application would need to run at every application's spin-up, and serialized the result into

the final executable, resulting in faster startup times [27]. Figure 3 illustrates the native

image build process previously described. Figure 4 illustrates a simplified representation

of GraalVM architecture in relation to the Truffle Framework.

Providing native support to Kubernetes, thanks to its built-in Docker images and

Kubernetes extensions, Quarkus is defined as "K-Native" or "Cloud-Native".

Figure 3 - Image build-time process [31]

14

Figure 4 - Simplified representation of GraalVM Architecture and Truffle framework [31]

2.3 Data interchange formats

Efficient mechanisms for data structuring and formatting are indispensable for managing

data traffic between services in order to ensure portability and interoperability while

avoiding excessive bandwidth costs [32]. Serialization formats or data interchange

formats directly impact microservices performances by (I) defining the end payload size

of the HTTP request and HTTP response carried in the body section, (II) affecting the

service's latency or response time as the server's serialized or deserialize the data [33].

Data interchange formats can be classified based on their typology: Textual formats and

Binary Formats [8].

2.3.1 Textual formats

Text-based data interchange formats are defined as such due to their textual representation

after the serialization process. The widespread adoption of textual serialization formats

guarantees high interoperability and flexibility [34]. This class of serialization formats is

characterized by the ability to be human-readable [8] and human-writable [32] at the

expense of schema support and typed data. The most notable textual interchange formats

are XML and JSON [35].

eXtensible Markup Language (XML) is a widely used standard format for data

representation in applications, including Web Services, and is designed to provide

simplicity, generality, and usability of data exchanged over the Internet [36]. Figure 5

illustrates the data structure of an uncompressed XML message.

15

JSON [34] is a text-oriented, lightweight, human-readable data interchange format

designed for the representation of simple data structures and associative arrays where

messages can be organized as objects composed of key-value pairs or an array of objects

[36]. Figure 6 shows the data structuring of an uncompressed JSON message.

The past decade has seen an increase in JSON utilization as a textual data interchange

format, replacing XML in many fields and becoming the industry-standard serialization

format for the implementation of REST APIs [8]. It also has proven to provide better

performance in terms of speed and less resource usage, even in a context where JSON is

not native [33].

Figure 5 - XML Data Structing format (uncompressed)

Figure 6 - JSON Data Structuring (uncompressed)

2.3.2 Binary Formats

Binary data interchange formats trade human readability and interoperability in favor of

faster serialization times and smaller payload size, as the data structure, after being

encoded, is represented in native binary form [8]. This class of serialization protocols

varies greatly, but they all aim to provide built-in schema support and validation and

strongly typed data support.

The past years have seen rapid development and interest in such technologies thanks to

their speed and size [8]. Currently, the landscape is vast, with multiple different formats

available such as Protocol Buffers, Cap'n Proto, FlatBuffers, and many more, as

illustrated in Figure 7 in conjunction with their serialization and deserialization

16

performances. Figure 8 shows the space allocated after serialization, with and without

compression.

Figure 7 - Total Serialization + Deserialization Time of common Binary Serialization Formats [37]

Figure 8 - Total allocated space of common Serialization Formats. Light blue shows the compressed size [37]

17

2.4 Protocol Buffers

Protocol Buffers, formerly known as Protobuf, are Google's language-neutral, platform-

neutral, extensible mechanism for serializing structured data [2]. Protocol Buffers have

been designed with speed and space efficiency in mind, providing fast serialization and

deserialization times while retaining a small memory footprint for efficient network

bandwidth usage. It comes with built-in mechanisms for versioning the APIs or endpoint

interfaces, allowing the data contract to seamlessly evolve without breaking applications

that are still built on top of legacy versions of the API. The structure of the data to be

encoded is defined by the user through the definition of .proto file[36]. The user-defined

data structure is subsequently compiled using the Protocol buffer compiler [38].

2.4.1 Context and Data Separation

Protobuf separate the context of the data from the data itself by defining the structure of

the message in a separate config file with .proto extension [2], allowing to reduce the

payload size as the transmitted message contains only the data and not the context. This

is not only important from a performance standpoint but also allows to validate the

message against an interface. It can be observed in Figure 10 and Figure 9 the different

message lengths of the same message encoded in JSON and using the Protobuf compiler,

as the JSON message has to transmit the context and the data, increasing the total message

size.

Figure 9 - Example of a JSON encoded object

Figure 10 - Example of a Protobuf encoded object in textual representation

18

2.4.2 Message Format

The data is encoded using Protobuf based on a user-defined configuration known as

messages [2]. Each message type has one or more uniquely numbered fields, and each

field has a name and a value type, where value types can be numbers, booleans, strings,

raw bytes, or other protocol buffer message types [36]. Figure 11 shows an example of a

message type definition of a Person object.

Figure 11 - Example of a Message Type definition [39]

2.4.3 LEB128: Base 128 Varints

Base 128 Varints are a method of serializing integers using a variable length of bytes [40]

and are utilized to overcome the problem of representing varying length integer values

[41]. This technique replaces the need to use a delimiter byte by using a single bit and is

part of a family of encoding techniques referred to as variable-length encoding [42]. The

encoded integer has the most significant bit (MSB) of every octet set, besides that last

byte. This approach allows to signal whatever there are more byte to be read. The

remaining lower 7 bits of the octet are used to store the two's complement representation

of the number in group s of 7 bits with the least significant group first [40]. Figure 12

shows an example of the number 300 encoded with the following technique.

19

Figure 12 - Example of the number 300 (base 10) encoded with LEB128 [40]

2.4.4 Binary Encoding

An example of a Person message, as shown in Figure 13, encoded using the protoc

compiler has been illustrated in Figure 14.

Figure 13 - Simplified Schema of a Person object

Figure 14 - Protobuf Encoded de-structuring of the Person object based on the Person Message Schema [43]

20

3 Methodology

This study has been conducted from a theoretical standpoint, through the use of literature

review, as well as from a practical standpoint through the implementation of an

experiment that aims to test, compare and outline the performance improvements aid by

the implementation of Protocol Buffers, Google's language-neutral, binary-based

representational data interchange formats over traditional text-based interchange format

in a modern, Supersonic, Cloud-Native, K-Native REST-based Java Microservice endpoint.

This section covers the details of the former, while the experiment is only briefly introduced;

more information is provided and discussed in the Benchmarking chapter of this study.

3.1 Information Sources

To gather all the relevant information on the investigated subject area, as well as all the

related work and the previous studies conducted on the topic, broad and detailed research

has been conducted utilizing the following tools and platforms:

1. IEEE Xplore [44]

2. SciTePress [45]

3. Google Scholar [46]

4. ACM Digital Library [47]

5. Kristianstad University Library [48]

The above-stated resources have been sorted in descending order by degree of relevance

of the articles used for the following study.

3.2 Literature Search Criteria

In order to gather pertinent results during the literature research phase of the study, a

refined selection of keywords has been adopted. The first approach has been to utilized

keywords directly related to the research question in order to yield and obtain the most

accurate and relevant studies on the subject. Therefore, a combination of the keywords

"data interchange format", "cloud-native", "k-native", "serialization formats", "inter-

service communication" was used. However, as a result of this search, very few results

have been obtained with no specific material on the implementation or usage of binary-

based data interchange formats in REST microservices in the context of Kubernetes

clusters. This motivated us to conduct a primary research with the help of an empirical

21

experiment to gather relevant data on the subject, as explained more in detail in section

4.0 Benchmarking.

3.3 Empirical approach

The approaches provided in this thesis, aimed at improving current inter-service

communication in high-density, K-Native Java REST-based microservice architectures,

will be implemented, analyzed, and compared to the current industry-standard

technology. Therefore, multiple REST API endpoints [5] will be created and tested

utilizing both text-based and binary-based representational data interchange format

through the use of Quarkus and GraalVM; varying data structure complexity, payload

size, and request frequency against the different approaches will allow to investigate the

provided approaches performances. Moreover, the testing will outline and represent

material for discussion regarding the benefits and caveats of each approach while

highlighting the implication that the usage of binary-based representational data

interchange format carries and how this affects the serialization and deserialization

performance.

3.4 Testing environment

The data collected during the following study has been gathered in a controlled

environment, and each test has been executed subsequently to one another. A complete

list of all the software used, with associated versions, is shown in Table 1, while the

hardware specifications are shown in Table 2.

Table 1 - Sofware specifications

No Technology Name Version

1 Operating System Windows 10 Pro v10.0.19042 Build 19042

2 k8s cluster Kind v0.10.0

3 Container Orchestration Kubernetes v1.14.0

4 Java Stack Quarkus v1.13.3.Final

5 Binary serialization format Protobuf v1.8.1 (camel-quarkus-protobuf)

6 RESTful Framework RESTEasy v1.13.3.Final

7 JSON Processor Jackson V1.13.3.Final

8 Programming Language Java SDK v14.0.1

9 Java Runtime (VM) GraalVM GraalVM CE 21.1.0

10 JSON Compressor Gzip v2.3.2.Final

11 Container Platform Docker C.19.03.9 | S.19.03.8

12 Dummy Data generator Faker V0.15

22

Table 2 - Hardware specifications

No Part Model

1 CPU Intel Core i9-9900K (multi-threading enabled)

2 Motherboard MSI MPG Z390 GAMING EDGE AC

3 GPU GeForce RTX 2080 @ 1860MHz

4 Ram 64GB @ 3600MHz

5 Storage Samsung SSD 970 Evo Plus

3.5 Analyzed metrics

The practical implementation of the following study will investigate the performance

impacts of the usage of a binary-based data interchange format, such as Google's Protocol

buffers [2], in the inter-service communication between two Java REST microservices

endpoints in a local Kubernetes cluster. Consequently, as explained in section 1.3 and in

more detail in section 2.3, the microservice's response time and latency, in relation to the

serialization times, in each and every respective studied serialization formats, will be

investigated as well as the HTTP response payload size with and without gzip [49]

compression. Transient memory, as well as RSS during serialization, will also be

analyzed, as been recognized to majorly impact microservices' costs.

23

4 Benchmarking

This section aims to provide a more in-depth overview of the characteristics, components,

and tools utilized during the execution of the practical experiment and the specifics

regarding the data collection and its implications.

4.1 K8s Local Cluster Environment

To ensure the study's validity and the required level of data accuracy, as discussed in

section 1.4.1, the experiment has been conducted in a local Kubernetes (K8s) cluster to

simulate a deployment of a modern containerized microservice. The K8s cluster has been

implemented using KIND (Kubernetes IN Docker) [50] and the kubernetes-cli (kubectl)

[51].

"kind is a tool for running local Kubernetes clusters using Docker

container "nodes" [17]

4.2 Quarkus Microservice Deployment

The Quarkus microservices have been deployed and run on the K8s cluster within a

Docker container [52] in JVM mode [53] as well as in native executable mode [54]. Both

the deployment have been investigated, but their performance difference has only been

discussed in section 6.1, whereas it intersects with the subject of this study or directly

impacts one of the analyzed metrics, as discussed in the study limitations in section 1.4.

4.2.1 JVM-Mode Container

The Quarkus microservices containers, regarding the creation of a containerized version

running in JVM mode, have been built using the built-in Dockerfile.jvm (see Appendix

1: Docker). The container image build has been performed using Jib [55] along with the

Quarkus extension quarkus-container-image-jib (Figure 15). The extension quarkus-

container-image-docker (Figure 16) has been used on top of Docker binary. Figure 17

shows the maven commands used to set the quarkus.container-image.build=true flag in

order to build the image.

For the full docker file, please refer to Appendix 2: Docker build.

24

Figure 15 - Maven: adding quarkus-container-extension [56]

Figure 16 - Maven: adding quarkus-container-image-docker extension for Docker binary [56]

Figure 17- Maven: building container image [56]

4.2.2 Native-mode Container

The Quarkus microservices have also been compiled to a native executable [30] and then

packaged within a container. The native executable has been built using Mandrel [57], a

distribution of GraalVM CE. For the full docker file, please refer to Appendix 2: Docker

build.

4.3 Supplementary Tools

A list of supplementary tools and software utilized to inspect, collect, or produced the

data contained in this study has been supplied below.

1. API Testing: Postman [58]

2. API load testing and graphing: JMeter [59]

3. Memory and performance analysis: JConsole [60]

4. Sampling, profiling, and tracing: VisualVM [61]

4.4 Test design

The tests have been designed to investigate and enhance inter-services communications

in modern, cloud-native, containerized RESTful Quarkus microservices by utilizing

Google's binary-based data interchange format and compiler, as explained in section 1.3.

As part of the investigation, two containerized microservices have been created and made

communication through the use of lightweight REST-based mechanisms. For each testing

scenario (see section 4.7), multiple subsequent requests have been executed in the

25

magnitude shown in Table 3 while varying the request type, the complexity of the data

structure serialized, and the count of the generated data (see section 4.8).

Table 3 – Testing conditions

Data structure

design
Request count1 Request types2 Data generation count3

Flat (simple) 1, 5, 50, 100 GET POST Up to to 300 000

Nested (complex) 1, 5, 50, 100 GET POST Up to 650

Note1: Applied only to metrics which result is measured in units of time.

Note2: Indicates the HTTP method upon which the experiment is conducted.

Note3: The date generation count has been set to create edge-case scenarios as well as an average scenario.

4.5 Serialization formats

The analyzed and compared serialization formats are JSON, as a representative format

for the textual category, and Protobuf for the binary-based class.

The JSON data has been encoded using the Jackson [62] serializer (see section 3.4 for

more details). On the other hand, the Protocol buffer data has been encoded using the

official c++ compiler.

4.6 Compression

The serialized data has been tested with compression enabled and disabled, using Gzip

(see section 3.4 for more info). The compression has been executed prior to the data being

transmitted over the wire, and the payload has been compressed through the built-in

RESTEasy Gzip and a more efficient external implementation. An upper limit on deflated

request body has also been applied as Quarkus specification recommends [63]. Figure

18 shows the Gzip being enabled in the Quarkus application config file, while Figure 19

illustrates the HTTP compression being enabled globally.

Figure 18 - Quarkus application settings: Gzip support enabled [63]

Figure 19 - Quarkus application settings: Global compression setting

26

4.7 Data Structure complexity

In order to investigate the metrics proposed in section 3.5, the REST requests have been

composed by varying the encoded data structure. Two data structures with different

complexity have been designed and implemented in the benchmarks to evaluate and

highlight the impact that different data structure complexity has on the serialization

speed, and ultimately on the response time, as well as studying which method has better

CPU utilization as well as lower transient memory usage.

4.7.1 Flat Approach

The first tested data structure has a simpler composition, as it can be observed in Figure

21, with a flat approach and no nested objects. It consists of a simple User object, with

the following fields: uid, email, username, profilePictureURL, and age. Figure 20

illustrates the proto definition used, while Figure 21 depicts an extract of the serialized

JSON object collection.

Figure 20 - User proto definition

Figure 21 - User object serialized - JSON response extract with dummy data

27

4.7.2 Nested Approach

To thoroughly study, compare and ultimately evaluate whatever Google's binary

interchange format, Protobuf, can be used to enhance inter-services communication in

modern, cloud-native, container-first, REST-based Quarkus microservices, a more

complex data structure has been implemented. A data structured with 4-level deep nested

objects, inspired by PayPal's v1 API [64], has been implemented to fully stress and test

the binary and textual representational format and serializer, as shown in Figure 22 (see

Appendix 4: Source code).

Figure 22 – Code segment (extract) of the Proto definition of the Payment nested (complex) data structure

28

4.8 Dummy Data Generation

Since this study also aims to provide an evaluation of the payload size in respect to each

analyzed serializer and serialization format, generating appropriate data, in regards to

type and length, during the object construction has been determined to be essential for the

accuracy of the study. The data had to be of the right type (string, int, float, etc.) as well

as have the appropriate length in order to simulate a real application scenario and to avoid

any possible compiler optimization. All the dummy data has been generated using the

java port of the popular Ruby's faker [65] gem library. An example of the accuracy of the

generated data using faker is shown in Figure 23.

Figure 23 - Faker data generation example (JSON Response Extract)

29

5 Results

5.1 Literature review results

The proposed literature review results have been produced, due to the lack and scarcity

of scientific publications and articles, at least as a result of the research conducted upon

the authoritative libraries discussed in section 3.1, using primarily the official

documentation provided by the authors of their respective technologies. Moreover, further

findings have highlighted the source of the absence present in the research field and the

reasoning behind it. The majority of the articles published in our field of interest, in

function and regarding the scope of the research question 2 (see section 1.2), describe

the implication and implementation of data versioning and migration strategies of

Google's language-neutral, binary data interchange format, Protocol Buffers [2] in the

context of gRPC. The explanation can be found and traced back to the fact that both

technologies are authored by the same company, Google. In addition, H.Bagci et al. [66]

gRPC employs Protocol buffers as their serialization format, as also stated in the official

gRPC documentation [67]. These results have been excluded as they inherently fall outside

the scope of this study. This thesis, as outlined in section 1.3, analyses the interservice

communication that is realized through the use of REST mechanisms and not RPC, as

considered previously when discussed regarding gRPC (see Appendix 1: Microservices).

An example of a typical microservice architecture that utilized both REST mechanism along

with gRPC technologies can be seen in Figure 39.

Protocol Buffers [2] are designed to be backward and forwards compatible, providing

out-of-the-box tools to handle data evolution through an improved system of versioning

management that allows updating existing message type definitions without breaking the

interoperability of systems that utilize legacy or older versions of the message. This is

realized, per specification, through the use of Reserved Fields and by the application of a

set of Rules and Recommendations [68].

Reserved tags are used to communicate to the developers, as well as to the protoc

compiler, that these tags are reserved and should not be utilized. This is extremely

important for versioning; whereas a message type definition is updated by either removing

or commenting out a field, future developers might re-use the same field tag. This can

cause several issues, including but not limited to data corruption and privacy bugs as they

30

are referring to different message definitions [69]. Figure 24 shows an example of a

message type definition being updated (the field name has been split in firstName and

lastName), and the reserved tag is used to handle the data evolution, communicating

future developers to not utilized the field with tag 2, as well as telling the protoc compiler

to prevent compilation if such field would be used. Therefore through documentation as

well as tooling support, it has been explicitly shown that the next available tag is 5.

Reserved tags can be enumerated in multiple ways, allowing single or multiple tags to be

reserved in a single line, as illustrated in Figure 26.

In scenarios where guaranteeing interoperability with other services that might not

support Protocol Buffers binary data interchange format is a necessity, Reserved tags,

despite they may be formally correct, and the messages compile successfully, cannot

distinguish between context ambiguities. In those cases, Reserved fields are used. Figure

25 illustrates a case scenario where a microservice communicates with a service that does

not support Protocol Buffers. The Protobuf message is then encoded in a textual

serialization format such as JSON. Even though in the Protocol Buffer context, in the

updated definition of our message (v2), the field fullName has a different meaning and

interpretation than the one in the first version (v1), when the message is serialized in

JSON, the meaning and context are lost. Figure 42 illustrates the usage of Reserved fields

over Reserved tags to address the previously described issues.

Along with these tools, a set of Rules and Recommendations [68] is provided in order to

guarantee seamless versioning and data migration. A list with all the rules and

recommendations provided by the Protobuf authors can be found in Appendix:

Theoretical work.

Figure 24 - Example scenario of a proto message type definition update - field name is split into firstName and

lastName

31

Figure 25 - Example scenario of a proto message type definition update encoded to JSON – context is lost

Figure 26 - Example scenario of a proto message type definition update - to prevent loss of context in case of encoding

to textual serialization format, the reserved field is used over the reserved tag

5.2 Empirical results

This section exposes the results obtained from the data gather executing the benchmarks

discussed in section 4.4. The response time benchmarks, together with the request

processing times benchmarks, have been executed 100 times sequentially with an initial

pre-request in order to obtain accurate data samples. Where applicable, the standard

deviation has been calculated and graphed accordingly in the form of error bars. More

detailed graphs and charts have also been supplied as supplementary material and can be

found in Appendix 3: Supplementary result materials.

5.2.1 Response time

The response time of two containerized microservice has been tested through the use of

the benchmarks discussed in section 4.4, and the results have been proposed below. This

section analyzes and compares the behavior of the system when a flat data structure and

a nested data structure (see section 4.7) are used.

32

Figure 27 - Response time benchmark results - GET / Data Generation 5 / Uncompressed / cache vs no-cache

comparison

5.2.2 Request Processing Time

The Request Processing Time of a containerized microservice has been tested through the

use of the benchmarks discussed in section 4.3, and the results have been proposed below.

The following test has been performed on the nested data structure (see section 4.7.2)

with a data generation count of up to 650 elements (see section 4.4).

Figure 28- Request Processing Time benchmarks Results / POST /Compressed / no-cache / Data generation count

comparison over time

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

 Protobuf JSON Protobuf JSON

No-Cache Cache

R
es

p
o

n
se

 T
im

e
(m

s)

173
201

373
414

492

656

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700

 Protobuf
(Compressed)

JSON
(Gzip + HTTP.C)

 Protobuf
(Compressed)

JSON
(Gzip + HTTP.C)

 Protobuf
(Compressed)

JSON
(Gzip + HTTP.C)

Data generation count: 5 Data generation count: 325 Data generation count: 650

R
eq

u
es

t
P

ro
ce

ss
in

g
 T

im
e

(m
s)

33

5.2.3 Payload size

The following benchmarks have been designed to test and evaluate the different request

and response payload sizes when (I) data structure and complexity (see section 4.7)

increments, and (II) the object count increases.

Figure 29 - Paylod size benchmark results / Data generation count 5 / flat data structure / compression comparison

Figure 30 - Paylod size benchmark results / flat data structure / data generation count comparison

78

749

73

1060

102

445

96

1040

96

220

0

200

400

600

800

1000

1200

 Header Body Header Body Header Body Header Body Header Body

Protobuf
(UnCompressed)

JSON (Gzip +
HTTP.C)

Protobuf
(Compressed)

JSON
(Gzip)

JSON
(Gzip + HTTP.C)

P
ay

lo
ad

 s
iz

e
(B

y
te

s)

14440

19460

43320

0

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000
32500
35000
37500
40000
42500
45000
47500

 Protobuf
(Compressed)

JSON
(Gzip + HTTP.C)

 Protobuf
(Compressed)

JSON
(Gzip + HTTP.C)

Data generation count: 100 000 Data generation count: 300 000

P
ay

lo
ad

 s
iz

e
(K

il
o

B
y

te
s)

34

Figure 31 - Paylod size benchmark results / nested data structure / data generation count comparison

5.2.4 Memory analysis

K-native applications are required to provide a small memory footprint in order to reduce

cloud costs as well as to provide the necessary performances, demanding every instance

to be as small and as efficient as possible. To further reinforce and motivate the reasonings

provided in section 6.0, the memory of each microservices has been studied with the tools

described in section 4.3.

Figure 32 - Memory analysis of the benchmark illustrated in Figure 43 during the JSON Serialization

4.04 11.39

11690

42170

48740

0

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

 Protobuf
(Compressed)

JSON
(Gzip +

HTTP.C)

 Protobuf
(Compressed)

JSON
(Gzip +

HTTP.C)

 Protobuf
(Compressed)

JSON
(Gzip +

HTTP.C)

Data generation count: 5 Data generation count: 325 Data generation count: 650

P
ay

lo
ad

 s
iz

e
(K

il
o

B
y

te
s)

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

5
1

:3
7

.5

5
1

:3
8

.5

5
1

:3
9

.5

5
1

:4
0

.5

5
1

:4
1

.5

5
1

:4
2

.5

5
1

:4
3

.5

5
1

:4
4

.5

5
1

:4
5

.5

5
1

:4
6

.5

5
1

:4
7

.5

5
1

:4
8

.5

5
1

:4
9

.5

5
1

:5
0

.5

5
1

:5
1

.5

5
1

:5
2

.5

5
1

:5
3

.5

5
1

:5
4

.5

5
1

:5
5

.5

5
1

:5
6

.5

5
1

:5
7

.5

5
1

:5
8

.5

5
1

:5
9

.5

5
2

:0
0

.5

5
2

:0
1

.5

5
2

:0
2

.5

Si
ze

 (
B

y
te

s)

Time (ms)

Heap Size [B] Heap Used [B]

35

Figure 33 - Memory analysis of the benchmark illustrated in Figure 43 during the Protobuf Serialization

Figure 34 - Memory analysis of the benchmark illustrated in Figure 44 during the JSON unsuccessful Serialization

Figure 35 - Memory analysis of the benchmark illustrated in Figure 44 during the Protobuf Serialization

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

5
2

:5
2

.6

5
2

:5
3

.6

5
2

:5
4

.6

5
2

:5
5

.6

5
2

:5
6

.6

5
2

:5
7

.6

5
2

:5
8

.6

5
2

:5
9

.6

5
3

:0
0

.6

5
3

:0
1

.6

5
3

:0
2

.6

5
3

:0
3

.6

5
3

:0
4

.6

5
3

:0
5

.6

5
3

:0
6

.6

5
3

:0
7

.6

5
3

:0
8

.6

5
3

:0
9

.6

5
3

:1
0

.6

5
3

:1
1

.6

5
3

:1
2

.6

5
3

:1
3

.6

5
3

:1
4

.6

5
3

:1
5

.6

5
3

:1
6

.6

5
3

:1
7

.6

Si
ze

 (
B

y
te

s)

Time (ms)

Heap Size [B] Heap Used [B]

0
200,000,000
400,000,000
600,000,000
800,000,000

1,000,000,000
1,200,000,000
1,400,000,000
1,600,000,000
1,800,000,000

Si
ze

 (
B

y
te

s)

Time (ms)

Heap Size [B] Heap Used [B]

0

200,000,000

400,000,000

600,000,000

800,000,000

1,000,000,000

1,200,000,000

1,400,000,000

0
1

:2
5

.0

0
1

:2
6

.0

0
1

:2
7

.0

0
1

:2
8

.0

0
1

:2
9

.0

0
1

:3
0

.0

0
1

:3
1

.0

0
1

:3
2

.0

0
1

:3
3

.0

0
1

:3
4

.0

0
1

:3
5

.0

0
1

:3
6

.0

0
1

:3
7

.0

0
1

:3
8

.0

0
1

:3
9

.0

0
1

:4
0

.0

0
1

:4
1

.0

0
1

:4
2

.0

0
1

:4
3

.0

0
1

:4
4

.0

0
1

:4
5

.0

0
1

:4
6

.0

0
1

:4
7

.0

0
1

:4
8

.0

0
1

:4
9

.0

0
1

:5
0

.0

0
1

:5
1

.0

0
1

:5
2

.0

0
1

:5
3

.0

0
1

:5
4

.0

Si
ze

 (
B

y
te

s)

Time (ms)

Heap Size [B] Heap Used [B]

36

6 Discussion

6.1 Research Question 1

This study suggested that a modern, Supersonic, Cloud-Native, K-Native REST-based

Java microservice endpoint can be enhanced, from a performance standpoint, by utilizing

Google's language-neutral, platform-neutral, binary-based data interchange format over

a traditional textual serialization format such as JSON or XML. The findings proposed in

section 5.2 suggest that the implementation of Protobuf as a binary data interchange

format to be utilized across multiple services, through the use of lightweight RESTful

mechanism over the HTTP Protocol, does, in fact, lead to performance improvements in

regards to response time, payload size and transient memory usage. However, it does not

come without caveats. Protocol buffers provide a higher serialization and deserialization

speed compared to JSON when serialized with Jackson, as shown in Figure 7 (see 2.3.2

Binary Formats); however, in the scope of this study, as illustrated in Figure 27, the

increase in serialization speed is negligible as it leads to only less than 2ms improvements

in service's response time corresponding to an 8.13% improvement across the board. It

must also be considered that in containerized microservices, where computational power

is expensive, caching policies are a very common solution to easily reduce resource

consumptions. It can be observed, in Figure 27, that the implementation of caching

policies is extremely effective, and in our testing aid to the same response time regarding

the serialization format in use, while providing even better metrics than baseline due to

the data been cached rather than re-computed. The most notable improvements have been

observed during the execution of Request Processing Time benchmarks, through the use

of POST requests, where the deserialization process was investigated. As previous studies

suggested, where benchmarks have been proposed in section 2.3.2, the major difference

measured in execution times between Protocol buffers and JSON/Jackson has been

recorded during the deserialization phase rather than the serialization phase, as JSON

appeared to be slower to be parsed rather than to encoded. In these scenarios, our

benchmarks, as discussed in section 5.2.1, and depicted in Figure 28, showed an

improvement of 25.1%, with a latency reduction in the best case observed of 164.3ms.

The payload size, on the other hand, according to our test results, gained a considerable

improvement due to the binary nature of Protobuf when compared to JSON. Protocol

37

buffers outperformed JSON in almost every one of our tests, providing significantly

smaller objects, with the only exception being when serializing very small objects with

low objects count as visible in Figure 29. This indicates that this is the point where the

extra metadata, added by Protobuf to later deserialize the data, occupies more space than

the advantage gained from the binary representation of the data. The binary format

provided, at worst, 25.80% smaller payloads, as shown in Figure 30 with a best-case

scenario of 58.2% smaller serialized objects compared to JSON when only compressed

with Gzip, as depicted in Figure 29, for flat data structures with a low object count.

Moreover, the payload size benchmark results of the nested data structure revealed an

improvement over JSON, in the worst-case scenario of 64.54% smaller object's size and

a remarkable best-case scenario of 72.28% smaller payloads. It is also necessary to point

out, due to the testing design created to provide an average-case as well as edge-case

scenarios, that in every test conducted, JSON wasn't able to serialize the object within

the set memory limit requirements; in these cases, the value 0 has been marked

accordingly on the provided graphs.

 The efficiency of Protocol buffers, when compared to JSON, has been observed to be

increasing with the (I) complexity and (II) size of objects. As shown in section 5.2.3, the

higher the complexity, especially in terms of nested objects, of the data structure to be

encoded, the higher the difference in system latency has been registered, especially during

the deserialization phase, partially for the reasons previously discussed. Further findings,

during our memory analysis, discussed in section 5.2.4, reinforced what our study has

suggested; despite the memory usage appears to have a very similar profile, as can be

observed in Figure 32 and Figure 33, the Protobuf compiler seems to be utilizing

memory more efficiently. Interestingly, in Figure 33, Protoc uses more heap memory

than Jackson, as shown in Figure 32, but still within the 400MB, pre-imposed memory

limit. Subsequently, on the contrary, when undergoing a more demanding test, with a

more complex and bigger object, that ultimately resulted in a big 43320KB binary blob,

as shown in Figure 30, it completed the serialization using more transient memory but

requesting (allocating) less heap memory allowing it to fully complete the serialization;

while Jackon allocated more memory and the Docker's memory constraints, killed the

process before the serialization was completed.

38

6.2 Research Question 2

The prerogative and end goal of microservices, as broadly discussed in section 2.0 and in

more detail later in section 2.1, is to design a system as a collection of loosely coupled

services that are self-contained and provide only a specific business functionality.

Traditional code-heavy monolith applications are, in this new way of designing

architectures, break down into independently, more serviceable, deployable

microservices that are typically deployed as containers on container clusters [10]. This

novel approach of designing systems mitigate, or in some cases, completely eliminated

the risk of single-point-of-failure; however, in an architecture where multiple applications

have to communicate and cooperate to produce a result, new communications challenges

arise. One of the most notable and historical issues that have been afflicting microservices

since their novel implementation has been the raw material that microservices work with

and manage: data. Due to its intrinsic nature, data is subjected to change and be updated;

this is especially true in RESTful APIs and microservices, where a single service can

unexpectedly change its interface and inadvertently breaks the contract that it prior

established with its consumers. In professional enterprise scenarios, as discussed in this

thesis, being able to proactively react to data changes and evolutions by implementing

means of versioning management that allows your API to evolve with backward

compatibility is essential. The analyzed data interchange format, Protobuf, provides such

functionalities out-of-box [68]. The built-in message-type definition also allows

validating incoming and outgoing messages against a specific .proto definition, as

discussed in section 2.4. In professional environments, where system robustness and type-

safe are a necessity, messages have to be strongly typed to ensure a smooth experience

and eliminate unexpected bugs and reduce the risks of exploits at runtime.

39

7 Conclusion

The study showed promising results regarding the implementation of Google's language-

neutral, platform-neutral, extensible mechanism for serializing structured data in modern,

cloud-native, container-first, REST-based Quarkus [1] microservice architectures. The

empirical results obtained from our testing confirmed our hypothesis formulated in the

research questions about the effectiveness of a binary-based serialization format in

reducing the response time and payload size, even if not at the expected degree. This

research provided a novel insight into the application of Protocol Buffers in containerized

Quarkus microservices that was not present in the research field prior.

The gathered findings can be summarized, in regards to the research questions initially

formulated, as follows:

R1: From a performance standpoint, how can the response time and payload size be

reduced in a modern, Supersonic, Cloud-Native, K-Native REST-based Java

Microservice endpoint?

The response time and payload size can be reduced by utilizing Google's binary data

interchange format rather than traditional textual serialization formats.

R2: How can a strongly typed binary-based representational data interchange format

with schema support improve versioning management, data evolution, and migration in

microservices?

Protocol Buffers provide an out-of-the-box mechanism to update the message type

definitions defined in .proto files. This allows easy message versioning as a means to

react to data evolution with backward compatibility as well as data migration.

7.1 Future Work

As briefly discussed in section 1.4, future work on this subject can be done by:

1. Deploy the benchmarks on online K8s clusters, such as the IBM Cloud

Kubernetes Service [70], in order to obtain more accurate data as well as to

investigate platform-specific service optimizations.

2. Compare other's binary data interchange formats, as disclosed in section 2.3.2.

40

8 References

1. Red Hat Software. Quarkus - Supersonic Subatomic Java [Internet]. [cited 2021

Feb 7]. Available from: https://quarkus.io/

2. Google Inc. Protocol Buffers: Defining A Message Type | Google Developers

[Internet]. [cited 2021 Apr 7]. Available from:

https://developers.google.com/protocol-buffers

3. Red Hat Software. quarkusio/quarkus: Quarkus: Supersonic Subatomic Java.

[Internet]. [cited 2021 May 11]. Available from:

https://github.com/quarkusio/quarkus

4. Red Hat Software. Why Kubernetes native instead of cloud native? | Red Hat

Developer [Internet]. [cited 2021 May 11]. Available from:

https://developers.redhat.com/blog/2020/04/08/why-kubernetes-native-instead-

of-cloud-native

5. Saleem R. Cloud Computing’s Effect on Enterprises [Internet]. Lund University;

2011. Available from: https://lup.lub.lu.se/student-

papers/search/publication/1764306

6. Alshuqayran N, Ali N, Evans R. A Systematic Mapping Study in Microservice

Architecture. In: 2016 IEEE 9th International Conference on Service-Oriented

Computing and Applications (SOCA). 2016. p. 44–51. , DOI:

10.1109/SOCA.2016.15, ISBN: 978-1-5090-4782-6

7. James Lewis MF. Microservices [Internet]. 2014 [cited 2021 May 7]. Available

from: https://martinfowler.com/articles/microservices.html

8. Sam Newman. Building Microservices [Internet]. 2nd ed. O’Reilly Media, Inc.;

2021 [cited 2021 May 7]. Available from:

https://www.oreilly.com/library/view/building-microservices-

2nd/9781492034018/, ISBN: 9781492034025

9. Dhalla HK. A Performance Analysis of Native JSON Parsers in Java, Python,

MS.NET Core, JavaScript, and PHP. In: 16th International Conference on

Network and Service Management, CNSM 2020, 2nd International Workshop on

Analytics for Service and Application Management, AnServApp 2020 and 1st

41

International Workshop on the Future Evolution of Internet Protocols, IPFutu.

Institute of Electrical and Electronics Engineers Inc.; 2020. , DOI:

10.23919/CNSM50824.2020.9269101

10. Kratzke N, Quint PC. Ppbench a visualizing network benchmark for microservices.

In: CLOSER 2016 - Proceedings of the 6th International Conference on Cloud

Computing and Services Science. SciTePress; 2016. p. 223–31. , DOI:

10.5220/0005732202230231, ISBN: 9789897581823

11. Feitosa Pacheco V. Chained Microservice Design Pattern: Understanding the

pattern. In: Microservice Patterns and Best Practices: Explore patterns like CQRS

and event sourcing to create scalable, maintainable, and testable microservices.

Birmingham, England: Packt Publishing; 2018. p. 333. , ISBN: 9781788474030

12. Anithakumari S, Chandrasekaran K. Monitoring and Management of Service

Level Agreements in Cloud Computing. Proc - 2015 Int Conf Cloud Auton

Comput ICCAC 2015. 2015;204–7. , DOI: 10.1109/ICCAC.2015.28, ISBN:

0769556361

13. Schulz F. Towards measuring the degree of fulfillment of service level agreements.

ICIC 2010 - 3rd Int Conf Inf Comput. 2010;3(3):273–6. , DOI:

10.1109/ICIC.2010.254, ISBN: 9780769540474

14. Marchioni F. Hands-On Cloud-Native Applications with Java and Quarkus: Build

high performance, Kubernetes-native Java serverless applications. Birmingham,

England: Packt Publishing; 2019. , ISBN: 9781838821470

15. Oracle Corporation. GraalVM [Internet]. [cited 2021 Mar 12]. Available from:

https://www.graalvm.org/

16. Kind K8s - Kubernetes. kind – Getting Started [Internet]. [cited 2021 Mar 11].

Available from: https://kind.sigs.k8s.io/docs/contributing/getting-started/

17. The Kubernetes Authors. Kind K8s - Kubernetes [Internet]. [cited 2021 Mar 11].

Available from: https://kind.sigs.k8s.io/

18. Pahl C, Jamshidi P. Microservices: A systematic mapping study. In: Proceedings

of the 6th International Conference on Cloud Computing and Services Science -

Volume 1: CLOSER. SciTePress; 2016. p. 137–46. , DOI:

42

10.5220/0005785501370146, ISBN: 9789897581823

19. Lin B, Chen Y, Chen X, Yu Y. Comparison between JSON and XML in

Applications Based on AJAX. Proc - 2012 Int Conf Comput Sci Serv Syst CSSS

2012. 2012;(February 1998):1174–7. , DOI: 10.1109/CSSS.2012.297, ISBN:

9780769547190

20. Maryanne Ndungu. ADOPTION OF THE MICROSERVICE ARCHITECTURE

[Internet]. ÅBO AKADEMI; 2019. Available from: http://urn.fi/URN:NBN:fi-

fe2019040310910, DOI: http://urn.fi/URN:NBN:fi-fe2019040310910

21. Pham NM. A proposal for a cloud-based microservice architecture for the

Skolrutiner system [Internet]. Uppsala University; 2020. Available from:

http://www.teknat.uu.se/student, DOI: urn:nbn:se:uu:diva-428348

22. Cloud Native Computing Foundation. Kubernetes [Internet]. [cited 2021 Mar 21].

Available from: https://kubernetes.io/

23. Soto A, Porter J. Quarkus Cookbook: Kubernetes-Optimized Java Solutions.

Sebastopol, CA: O’Reilly Media; 2020. , ISBN: 9781492062653

24. Red Hat Software. Quarkus reduces boot time and memory consumption for

container-native apps [Internet]. 2019 [cited 2021 Apr 1]. Available from:

https://www.redhat.com/en/resources/quarkus-infographic-supersonic-subatomic-

java

25. Oracle Corporation. Polyglot Programming [Internet]. [cited 2021 Feb 24].

Available from: https://www.graalvm.org/reference-manual/polyglot-

programming/

26. Oracle Corporation. Truffle Language Implementation Framework [Internet].

[cited 2021 Feb 24]. Available from: https://www.graalvm.org/graalvm-as-a-

platform/language-implementation-framework/

27. Oracle Corporation. Quarkus: Container First [Internet]. [cited 2021 Mar 21].

Available from: https://quarkus.io/vision/container-first

28. Oracle Corporation. Quarkus - Contexts and Dependency Injection [Internet].

[cited 2021 Apr 28]. Available from: https://quarkus.io/guides/cdi-reference

29. Oracle Corporation. Oracle: Using Java Reflection [Internet]. [cited 2021 Apr 27].

43

Available from: https://www.oracle.com/technical-

resources/articles/java/javareflection.html

30. Red Hat Software. Quarkus - Building a Native Executable [Internet]. [cited 2021

Apr 27]. Available from: https://quarkus.io/guides/building-native-image

31. Sipek M, Muharemagic D, Mihaljevic B, Radovan A. Enhancing performance of

cloud-based software applications with GraalVM and quarkus. In: 2020 43rd

International Convention on Information, Communication and Electronic

Technology, MIPRO 2020 - Proceedings. 2020. p. 1746–51. , DOI:

10.23919/MIPRO48935.2020.9245290, ISBN: 9789532330991

32. Emeakaroha VC, Healy P, Fatema K, Morrison JP. Analysis of Data Interchange

Formats for Interoperable and Efficient Data Communication in Clouds. In: 2013

IEEE/ACM 6th International Conference on Utility and Cloud Computing. 2013.

p. 393–8. , DOI: 10.1109/UCC.2013.79, ISBN: 978-0-7695-5152-4

33. Nurzhan Nurseitov, Michael Paulson, Randall Reynolds CI. Comparison of JSON

and XML Data Interchange Formats: A Case Study. In: Proceedings of the ISCA

22nd International Conference on Computer Applications in Industry and

Engineering, CAINE 2009, November 4-6, 2009, Hilton San Francisco

Fisherman’s Wharf, San Francisco, California, USA [Internet]. ISCA; 2009. p.

157–62. Available from: https://dblp.uni-

trier.de/rec/conf/caine/NurseitovPRI09.html?view=bibtex

34. Maeda K. Performance evaluation of object serialization libraries in XML, JSON

and binary formats. In: 2012 2nd International Conference on Digital Information

and Communication Technology and its Applications, DICTAP 2012. 2012. p.

177–82. , DOI: 10.1109/DICTAP.2012.6215346, ISBN: 9781467307338

35. Sumaray A, Makki SK. A comparison of data serialization formats for optimal

efficiency on a mobile platform. In: Proceedings of the 6th International

Conference on Ubiquitous Information Management and Communication,

ICUIMC’12. 2012. , DOI: 2184751.2184810, ISBN: 9781450311724

36. Emeakaroha VC, Healy P, Fatema K, Morrison JP. Analysis of data interchange

formats for interoperable and efficient data communication in clouds. In:

Proceedings - 2013 IEEE/ACM 6th International Conference on Utility and Cloud

44

Computing, UCC 2013. 2013. p. 393–8. , DOI: 10.1109/UCC.2013.79, ISBN:

9780769551524

37. Eishay Smith. JVM Serializer comparison - GitHub [Internet]. [cited 2021 Mar 8].

Available from: https://github.com/eishay/jvm-serializers/wiki

38. Kaur G, Fuad MM. An evaluation of protocol buffer. Conf Proc - IEEE

SOUTHEASTCON. 2010;459–62. , DOI: 10.1109/SECON.2010.5453828, ISBN:

9781424458530

39. Language Guide (proto3) | Protocol Buffers | Google Developers [Internet].

[cited 2021 May 12]. Available from: https://developers.google.com/protocol-

buffers/docs/proto3#updating

40. Google Inc. Encoding | Protocol Buffers | Google Developers [Internet]. [cited

2021 Mar 9]. Available from: https://developers.google.com/protocol-

buffers/docs/encoding

41. Nazar Hussain. Encoding Base128 Varints, Explained | Hacker Noon [Internet].

[cited 2021 Mar 9]. Available from: https://hackernoon.com/encoding-base128-

varints-explained-371j3uz8

42. Li Y, Lin SJ. Removing Redundancy in Little-Endian Base 128 and the Efficient

Decoding Approach. IEEE Commun Lett. 2020;24(11):2411–5. , DOI:

10.1109/LCOMM.2020.3008425

43. Martin Kleppmann. Designing data-intensive applications: The big ideas behind

reliable, scalable, and maintainable systems [Internet]. 1st ed. Sebastopol, CA:

O’Reilly Media; 2017 [cited 2021 May 16]. Available from:

https://www.oreilly.com/library/view/designing-data-intensive-

applications/9781491903063/, ISBN: 9781449373320

44. IEEE. IEEE Xplore [Internet]. [cited 2021 Mar 10]. Available from:

https://ieeexplore.ieee.org/Xplore/home.jsp

45. Science and Technology Publications L. SciTePress - SCIENCE AND

TECHNOLOGY PUBLICATIONS [Internet]. [cited 2021 Mar 10]. Available

from: https://www.scitepress.org/HomePage.aspx

46. Google Inc. Google Scholar [Internet]. [cited 2021 Mar 10]. Available from:

45

https://scholar.google.com/

47. Association for Computing Machinery. ACM Digital Library [Internet]. [cited

2021 Mar 10]. Available from: https://dl.acm.org/

48. Kristianstad University. Biblioteket Högskolan Kristianstad | HKR.se [Internet].

[cited 2021 Mar 10]. Available from: https://www.hkr.se/biblioteket

49. The gzip home page [Internet]. [cited 2021 Mar 10]. Available from:

https://www.gzip.org/

50. The Kubernetes Authors. kubernetes-sigs/kind: Kubernetes IN Docker - local

clusters for testing Kubernetes [Internet]. [cited 2021 Mar 11]. Available from:

https://github.com/kubernetes-sigs/kind

51. The Kubernetes Authors. kubectl | Kubernetes [Internet]. [cited 2021 Mar 11].

Available from: https://kubernetes.io/docs/tasks/tools/

52. Docker I. What is a Container? | App Containerization | Docker [Internet]. [cited

2021 Mar 11]. Available from: https://www.docker.com/resources/what-container

53. John O’Hara. Quarkus Runtime Performance [Internet]. [cited 2021 Apr 12].

Available from: https://quarkus.io/blog/runtime-performance/

54. Red Hat Software. Quarkus - Tips for writing native applications [Internet]. [cited

2021 Apr 12]. Available from: https://quarkus.io/guides/writing-native-

applications-tips

55. Google Inc. GoogleContainerTools/jib: ? Build container images for your Java

applications. [Internet]. [cited 2021 Mar 11]. Available from:

https://github.com/GoogleContainerTools/jib

56. Red Hat Software. Quarkus - Container Images [Internet]. [cited 2021 May 11].

Available from: https://quarkus.io/guides/container-image

57. GraalVM Developers. graalvm/mandrel: Mandrel is a downstream distribution of

the GraalVM community edition. Mandrel’s main goal is to provide a native-image

release specifically to support Quarkus. [Internet]. [cited 2021 Apr 12]. Available

from: https://github.com/graalvm/mandrel

58. Team TP. Postman | The Collaboration Platform for API Development [Internet].

Available from: https://www.postman.com/

46

59. The Apache Software Foundation. Apache JMeter - Apache JMeterTM [Internet].

Available from: https://jmeter.apache.org/

60. Oracle Corporation. OpenJDK - JConsole [Internet]. Available from:

https://openjdk.java.net/tools/svc/jconsole/

61. Jiri Sedlacek TH. VisualVM: Download [Internet]. Available from:

https://visualvm.github.io/download.html

62. FasterXML. FasterXML/jackson: Main Portal page for the Jackson project

[Internet]. [cited 2021 May 12]. Available from:

https://github.com/FasterXML/jackson

63. Red Hat Software. Quarkus - Writing JSON REST Services [Internet]. [cited 2021

Feb 11]. Available from: https://quarkus.io/guides/rest-json#gzip-support

64. Paypal Inc. Payments [Internet]. [cited 2021 Apr 11]. Available from:

https://developer.paypal.com/docs/api/payments/v1/

65. DiUS Computing Pty Ltd. DiUS/java-faker: Brings the popular ruby faker gem to

Java [Internet]. [cited 2021 Apr 11]. Available from:

https://github.com/DiUS/java-faker

66. Bagci H, Kara A. A lightweight and high performance remote procedure call

framework for cross platform communication. In: ICSOFT 2016 - Proceedings of

the 11th International Joint Conference on Software Technologies. SciTePress;

2016. p. 117–24. , DOI: 10.5220/0005931201170124, ISBN: 9789897581946

67. gRPC Authors. Introduction to gRPC | gRPC [Internet]. [cited 2021 Apr 15].

Available from: https://grpc.io/docs/what-is-grpc/introduction/

68. Google Inc. Updating A Message Type | Protocol Buffers | Google Developers.

Available from: https://developers.google.com/protocol-

buffers/docs/proto3#updating

69. Google Inc. Reserved Fields | Protocol Buffers | Google Developers [Internet].

Available from: https://developers.google.com/protocol-

buffers/docs/overview#reserved

70. IBM. IBM Cloud Kubernetes Service - Overview - Sweden | IBM [Internet]. [cited

2021 May 12]. Available from: https://www.ibm.com/se-en/cloud/kubernetes-

47

service

71. Charlotte Mach CL. What Is Inter-Process Communication? [Internet]. 2021 [cited

2021 May 16]. Available from: https://blog.container-solutions.com/wtf-is-inter-

process-communication

72. Buono Vincenzo. espressoshock/da399b-supplementary-material-public: Enhance

Inter-service Communication in Supersonic K-Native REST-based Java

Microservice Architectures - Supplementary material and source code [Internet].

[cited 2021 May 16]. Available from: https://github.com/espressoshock/da399b-

supplementary-material-public

48

Appendices

Appendix 1: Microservices

Figure 36 - A microservice exposing its functionality over a REST API and a queue [8]

Figure 37 - A traditional three-tiered architecture [8]

49

Figure 38 - Each microservice, if required, can encapsulate presentation, business logic, and data storage functionality

[8]

Figure 39 - Example of Microservice architecture that bundles front-end and microservices with API gateways, REST

and gRPC [71]

50

Appendix 2: Docker build

This section contains the files used for the Docker build. The full files in their integrity

are also provided in this section. Figure 40 shows the content of the file Dockerfile.jvm

while Figure 41 illustrates the content of the file Dockerfile.native used for building the

native image.

Figure 40 - NVM-mode docker file

Figure 41 - Native-mode docker file

51

Appendix 3: Supplementary result materials

This appendix reports supplementary results materials, including but not limited to

graphs, charts, tables, and figures.

Theoretical work

This section contains supplementary material related from the conducted literature

review. Figure 42 shows an example of the usage of the reserved field over the reserved

tag to preserve the context.

Figure 42 - Example scenario of a proto message type definition update - to prevent loss of context in case of encoding

to textual serialization format, the reserved field is used over the reserved tag

Table 4 - Rules and Recommendations provided by the Protobuf Authors when updating a message type definition [68]

Recommendation

No.
Description

0 Don't change the field numbers for any existing fields.

1 Any new fields that you add should be optional or repeated

2

Non-required fields can be removed, as long as the field number is not used again in your

updated message type. You may want to rename the field instead, perhaps adding the prefix

"OBSOLETE_",

3

A non-required field can be converted to an extension and vice versa, as long as the type and

number stay the same

4 int32, uint32, int64, uint64, and bool are all compatible

5

sint32 and sint64 are compatible with each other but are not compatible with the other

integer types.

6 string and bytes are compatible as long as the bytes are valid UTF-8.

7

Embedded messages are compatible with bytes if the bytes contain an encoded version of the

message.

8 fixed32 is compatible with sfixed32, and fixed64 with sfixed64

9 For string, bytes, and message fields, optional is compatible with repeated

52

Empirical Experiment

This section provides supplementary graphs of the conducted experiment, including but

not limited to, the request and response header and body size. Figure 43 depicts

benchmark results regarding the payload size with a data generation count of 100 000

elements while Figure 44 shows the payload size when the data count is increased to 300

000 elements. Figure 45 illustrates the payload size when nested objects are serialized

and presents a comparison of the analyzed data interchange formats. Figure 46 represents

the same benchmark but with a higher element count (325), while Figure 47 compares

the latter when the data generation count is set to 650 elements.

Figure 43 - Payload size benchmark results / Data Generation Count 100 000 / flat data structure / data presented

with header and body size

0.109

14440

0.103

19460

0

5000

10000

15000

20000

25000

 Header Body Header Body

Protobuf (Compressed) JSON (Gzip + HTTP.C)

P
ay

lo
ad

 s
iz

e
(K

il
o

B
y

te
s)

53

Figure 44 - Payload size benchmark results / Data Generation Count 300 000 / flat data structure / data presented

with header and body size

Figure 45 - Payload size benchmark results / Data Generation Count 5 / nested data structure / data presented with

header and body size

0.109

43320

0 0

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

 Header Body Header Body

Protobuf (Compressed) JSON (Gzip + HTTP.C)

P
ay

lo
ad

 s
iz

e
(K

il
o

B
y

te
s)

0.079

4.04

0.079

11.39

0

1

2

3

4

5

6

7

8

9

10

11

12

 Header Body Header Body

Protobuf (Compressed) JSON (Gzip + HTTP.C)

P
ay

lo
ad

 s
iz

e
(K

il
o

B
y

te
s)

54

Figure 46 - Payload size benchmark results / Data Generation Count 325 / nested data structure / data presented with

header and body size

Figure 47 - Payload size benchmark results / Data Generation Count 650 / nested data structure / data presented with

header and body size

0.085

11690

0.079

42170

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

 Header Body Header Body

Protobuf (Compressed) JSON (Gzip + HTTP.C)

P
ay

lo
ad

 s
iz

e
(K

il
o

B
y

te
s)

0.085

48740

0 0

0

10000

20000

30000

40000

50000

60000

 Header Body Header Body

Protobuf (Compressed) JSON (Gzip + HTTP.C)

P
ay

lo
ad

 s
iz

e
(K

il
o

B
y

te
s)

55

Appendix 4: Source code

This appendix reports the source code of the following study, including the generate

classes compiled by the Protobuf protoc compiler. Figure 48 shows the message type

definition of the nested data structure used for the benchmarks.

Source code available at: https://github.com/espressoshock/da399b-supplementary-

material-public [72]

Source code of protoc compiled classes: https://github.com/espressoshock/da399b-

supplementary-material-public/tree/main/protoc

Figure 48 - Proto definition of the Payment nested (complex) data structure

https://github.com/espressoshock/da399b-supplementary-material-public
https://github.com/espressoshock/da399b-supplementary-material-public
https://github.com/espressoshock/da399b-supplementary-material-public/tree/main/protoc
https://github.com/espressoshock/da399b-supplementary-material-public/tree/main/protoc

	1 Introduction
	1.1 Problem and Motivation
	1.2 Research Questions
	1.3 Aim and Purpose
	1.4 Limitations
	1.4.1 K8s deployment
	1.4.2 Data interchange formats

	1.5 Ethics

	2 Background
	2.1 Microservices
	2.2 Quarkus
	2.2.1 Supersonic, Subatomic, Java
	2.2.2 Container-First

	2.3 Data interchange formats
	2.3.1 Textual formats
	2.3.2 Binary Formats

	2.4 Protocol Buffers
	2.4.1 Context and Data Separation
	2.4.2 Message Format
	2.4.3 LEB128: Base 128 Varints
	2.4.4 Binary Encoding

	3 Methodology
	3.1 Information Sources
	3.2 Literature Search Criteria
	3.3 Empirical approach
	3.4 Testing environment
	3.5 Analyzed metrics

	4 Benchmarking
	4.1 K8s Local Cluster Environment
	4.2 Quarkus Microservice Deployment
	4.2.1 JVM-Mode Container
	4.2.2 Native-mode Container

	4.3 Supplementary Tools
	4.4 Test design
	4.5 Serialization formats
	4.6 Compression
	4.7 Data Structure complexity
	4.7.1 Flat Approach
	4.7.2 Nested Approach

	4.8 Dummy Data Generation

	5 Results
	5.1 Literature review results
	5.2 Empirical results
	5.2.1 Response time
	5.2.2 Request Processing Time
	5.2.3 Payload size
	5.2.4 Memory analysis

	6 Discussion
	6.1 Research Question 1
	6.2 Research Question 2

	7 Conclusion
	7.1 Future Work

	8 References
	Appendices
	Appendix 1: Microservices
	Appendix 2: Docker build
	Appendix 3: Supplementary result materials
	Theoretical work
	Empirical Experiment

	Appendix 4: Source code

