
 

Independent project (degree project), 15 credits, for the degree of 
Bachelor of Science (180 credits) with a major in Computer Science  
Spring Semester 2021 
Faculty of Natural Sciences 

 

 

Enhance Inter-service Communication in 

Supersonic K-Native REST-based Java 

Microservice Architectures 

 
Vincenzo Buono, Petar Petrovic 
 
 
 
 
 
 
 

  



 

 

 

Author 
Vincenzo Buono 
Petar Petrovic 

Title 
Enhance Inter-service Communication in Supersonic 
K-Native REST-based Java Microservice Architectures 

Supervisor 
Fredrik Stridh 

Examiner 
Dawit Mengistu 

Abstract  
The accelerating progress in network speeds and computing power permitted the architectural design 
paradigm to shift from monolithic applications to microservices. The industry moved from single-core and 
multi-threads, code-heavy applications, running on giant machines 24/7 to smaller machines, multi-cores 
single threads where computing power and memory consumption are managed very critically. With the 
advent of this novel approach to designing systems, traditional multi-tier applications have been broken 
down into hundreds of microservices that can be easily moved around, start, and stop quickly. In this 
context, scaling assumed a new meaning, rather than scaling up by adding more resources or computing 
power, now systems are scaled dynamically by adding more microservices instances. This contribution 
proposes a theoretical study and a practical experiment to investigate, compare and outline the 
performance improvements aid by the implementation of Protocol Buffers, Google's language-neutral, 
binary-based representational data interchange format over traditional text-based serialization formats in 
a modern, Cloud-Native, REST-based Java Microservice architecture. Findings are presented showing 
promising results regarding the implementation of Protobuf, with a significant reduction in response time 
(25.1% faster in the best-case scenario) and smaller payload size (72.28% better in the best-case 
scenario) when compared to traditional textual serialization formats while literature revealed out-of-the-
box mechanisms for message versioning with backward compatibility.  
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1 Introduction 

This study proposes a novel approach to enhance inter-services communication in 

modern, cloud-native, container-first, REST-based Quarkus [1] microservice 

architectures by improving current, industry-standard text-based representational data 

interchange format and serialization technique. The outlined solution aims to improve 

Machine to Machine communication through the use of Google's platform-neutral, 

language-neutral, binary-based representational data interchange format, formerly 

named Protocol Buffers [2]. Throughout the thesis, the keywords Supersonic and 

Subatomic, where applicable, may be utilized as a substitute or synonym in reference to 

the Quarkus framework, as intended by the Quarkus authors [3]. Quarkus is a 

Kubernetes-Native Java stack tailored for OpenJDK HotSpot and GraalVM [1]. The word 

K-Native will be adopted during this study and implied as a shorthand for Kubernetes-

Native and intended as a specialization of the Cloud-Native concepts, where applications 

are designed and built for Kubernetes specifically rather than deployed directly on the 

cloud [4].  

1.1 Problem and Motivation 

In the past decade cloud computing [5] has seen substantial growth, with REST-based 

(REpresentational state transfer) microservices being one of the most adopted service-

oriented architectures (SOA) [6]. With this novel approach of designing a system as a 

collection of loosely coupled services, typically hosted on different remote nodes, that 

are interconnected through the use of lightweight mechanism over the network [7], the 

inter-service communication aspect started to gain attention due to its importance in the 

implementation of microservices. Notwithstanding the HTTP protocol capabilities allow 

the transmission of both textual and binary payloads, the widespread usage of text 

serialization formats such as JSON or XML is predominant over their binary counterparts, 

with JSON being the most used serialization format. The broad adoption of JSON has to 

be attributed to a multitude of reasons, but most importantly, to the fact that historically 

the primary consumer of APIs was a browser [8], where JSON is natively supported and 

a first-class citizen in the Javascript client-side programming language [9]. However, 

microservices are often implemented in different programming languages [10], running 

in different runtimes and environments, or leverage different technology stacks. In 
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addition, a service might not be able to provide a complete solution to a specific request, 

and therefore compiling information with other domains may be necessary [11]; in such 

scenarios, where the chained microservice design pattern is applied, a single access point 

for a specific resource is provided, but its response is composed by aggregating multiple 

services' response. In such enterprise scenarios, performance metrics such as payload 

size, serialization and deserialization speed, transient memory usage during encoding 

(allocated and utilized heap and metaspace memory size), thread utilization and 

request/response latency, as well as maintainability factors such as strongly typed and 

schema-based data format with improved supports for versioning are essential for the 

deployed system to respect the required service-level agreement (SLA) [12,13]. 

 In this context, it is logical to be questioning whatever the communication between 

services can be improved by adopting a platform-neutral, binary-based representational 

data interchange format and an improved serialization approach in professional Java 

Cloud-native microservice architectures built on top of Quarkus [1] and GraalVM 

[14,15]. 

1.2 Research Questions 

The study answers the following research questions:  

R1: From a performance standpoint, how can the response time and payload size be 

reduced in a modern, Supersonic, Cloud-Native, K-Native REST-based Java 

Microservice endpoint? 

R2: How can a strongly typed binary-based representational data interchange format 

with schema support improve versioning management, data evolution, and migration in 

microservices? 

1.3 Aim and Purpose 

The purpose of this research is to analyze, investigate and enhance inter-services 

communication in modern, cloud-native, container-first, REST-based Quarkus [1] 

microservice architectures by improving current, industry-standard text-based 

representational data interchange format and serialization technique. 

The following thesis will discuss in great detail how to improve Machine to Machine 

communication through the use of a platform-neutral, binary-based representational data 
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interchange format and an improved serialization approach in professional Java Cloud-

native microservice architectures. Furthermore, findings will be proposed to demonstrate 

how the use of Protocol Buffers [2] can enhance such systems by providing a smaller 

payload, faster serialization and deserialization, better versioning, and support for typed 

data compared to traditional, schema-less data interchange formats such as JSON.  

Protocol Buffers are Google's language-neutral, platform-neutral, extensible mechanism 

for serializing structured data [2].  

1.4 Limitations 

1.4.1 K8s deployment 

In order to study and investigate the impacts of the usage of a binary-based 

representational data interchange format, in modern containerized Quarkus 

microservices, the services have to be deployed on a Kubernetes [16] cluster. Deploying 

microservices on the cloud, however, especially for benchmarking purposes, can be very 

complex as well as very expensive due to the typical pay-per-consume rates, as the 

customer typically pays for the computational power that the services use. For this reason, 

and also because the research would exceed the scope and thesis constraints, the 

microservices have been deployed locally with the use of third-party software to ensure 

the validity of the gathered data, as well as the accuracy of the results in a real deployment 

scenario. In this regard, KIND (Kubernetes IN Docker) [17] has been adopted to ensure 

the portability of the results in the cloud, as described in section 4.1.  

1.4.2 Data interchange formats 

For the following study has been chosen, as a reference binary-based data interchange 

format, Google's language-neutral, platform-neutral, Protocol buffer serialization format. 

As shown in section 2.3.2, there are many binary serialization formats, even with faster 

serialization speeds than Protobuf, as illustrated in Figure 7. Protocol Buffer has been 

chosen among those due to its support and popularity, but most importantly, it is natively 

supported by Quarkus as a native extension. Quarkus' native extensions differ from 

regular libraries because they can be natively compiled and optimized by the GraalVM 

when running as a native executable. Since enhancing inter-service communication is a 
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prerogative of this thesis, it has been recognized to be essential to pick technologies that 

do not decrease or degrade the efficiency or performance as it would go against the aim 

of this research.  

1.5 Ethics 

Since the results contained in this thesis can ultimately be utilized either as a consideration 

factor during the design of a REST microservice architecture or as a starting point for 

further work in the field, it has been determined that the experiments contained in this 

study are conducted ethically. In this context, the benchmarks provided along with this 

study have been created with the aim to investigate and measure the impact of the 

implementation of Protocol Buffers, Google's binary-based representational data 

interchange format, over traditional textual serialization formats in a modern, Supersonic, 

Cloud-Native, REST-based Java Microservice architecture. With the end goal of 

enhancing interservice communication, we specifically limit the scope of our analysis and 

testing to the technologies previously discussed, isolating the improvements aid by the 

latter from other possible contaminating factors. However, as broadly discussed in section 

3.3 and subsequently confirmed by the findings provided in section 5.2, the results 

obtained can vary based on the testing environment, on the version of the technologies 

analyzed as well as the complexity of the encoded data structures. For these reasons has 

been disclosed a public listing of all the technologies and versions used during the 

execution of the empirical experiment along with the hardware specification of the testing 

rig (see section 3.4).  
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2 Background 

In recent years, there has been an increasing interest in cloud computing, with REST-

based microservice architectures being one of the most adopted service-oriented 

architectures (SOA) [18]. This novel approach of designing a system as a collection of 

loosely coupled services aims to break up traditional code-heavy monolithic multi-tier 

application architectures into independently self-contained, deployable services that can 

be seamlessly stopped, started, and scaled in the cloud accordingly to the load balancing 

demands [8]. Layered architectures, as depicted in Figure 37 (see Appendix 1: 

Microservices), have each layer tied to a different service boundary, with each being 

related to a specific technical solution; in such scenario, implementation of new 

functionalities is expensive and fairly inefficient as changes are often not bounded to a 

specific technology stack and therefore span over multiple layers. In contrast, a service 

in a microservice architecture is modeled around a business domain and contains end-to-

end slices of business functionalities [8] by encapsulating, where applicable and 

necessary, all the layers including, but not limited to, presentation layer, business layer, 

persistence layer, and data storage layer as illustrated in Figure 38 (see Appendix 1: 

Microservices). Systems built upon the microservice architectural style are designed as 

a suite of small interconnected services, each running on its own process, typically within 

an orchestration framework, that encapsulates a business functionality that is made 

accessible to other services via network [8] through the use of lightweight mechanism 

such as, but not limited to, HTTP resource API [7]. Microservices provide their business 

functionalities on one or more network endpoints [8] and hand over their resources 

serialized into a specific data interchange format that can be deserialized and consumed 

by the clients. Typical REST microservices use a text-based representational data 

interchange format and serialization technique due to the high compatibility of the latter 

in the destination platform that the technology originated and evolved: the web. Current 

industry-standard formats are JSON and XML [19].  

2.1 Microservices 

The microservice architecture has become one of the most adopted and predominant 

architectural style in the service-oriented industry [18]. The microservice architecture is 

an architectural style designed as a collection of small services that suites large-scaled 
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applications. Attributes such as loose coupling, high cohesion, resilience, and scalability 

are typical of microservices architectures.  

Services are built upon business functionalities and are platform agnostic, meaning they 

are commonly built using numerous programming languages. Microservices often 

communicate through HTTP mechanisms such as REST (Representational State 

Transfer). Since each service is independent of the other, they do not need to know about 

the underlying architecture or the implementation [20,21]. 

"In short, the microservice architectural style is an 

approach to developing a single application as a suite 

of small services, each running in its own process 

and communicating with lightweight mechanisms, often 

an HTTP resource API. [...] Services are independently 

deployable and scalable, each service also 

provides a firm module boundary, even allowing for 

different services to be written in different programming 

languages." [7] 

2.2 Quarkus 

2.2.1 Supersonic, Subatomic, Java 

Quarkus [1] is an open-source cloud-native framework with built-in Kubernetes [22] 

integration [23]. The open-source stack is often referred to as "supersonic, subatomic" as 

Quarkus tailors your applications to minimize boot time with particular attention to the 

First Response time, allowing requests to be serviced in the order of milliseconds [24], as 

shown in Figure 1. The framework is also optimized to have a small memory footprint, 

allowing low main memory or resident set size (RSS) consumptions while producing 

small binaries, hence the word "subatomic" in the framework definition, as illustrated in  

Figure 2. Quarkus is also polyglot because it provides supports to several JVM languages 
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and, thanks to GraalVM, allows the developers to write polyglot applications that 

seamlessly can pass values from one language to another [25] by means of the Truffle 

language implementation framework [26]. 

A Kubernetes Native Java stack tailored for OpenJDK HotSpot and 

GraalVM, crafted from the best of breed Java libraries and 

standards.[1] 

 

Figure 1 - Quarkus Boot + First Response Time official benchmarks [1] 

 

Figure 2 - QuarkusMemory (RSS) in Megabytes official benchmarks [1] 

2.2.2 Container-First  

Quarkus has been designed around a container-first philosophy [27], allowing developers 

to create, optimize and deploy cloud-native applications in Kubernetes' container clusters 

with ease by providing all the previously described advantages.  

When deploying a containerized microservices [10], the end goal is to maximize the 

number of instances of your application in order to scale and meet the unexpected load 

while still utilizing as many of the resources as possible. During the scaling-up process, 

in order to fulfill the incoming traffic load, the application's instances need to be up and 

running as quickly as possible; Quarkus, by producing small, native executable binaries, 

through the use of GraalVM, solves this problem, creating container-native applications 

for peak performance [23,24]. Its performance is attributed not solely to the First Class 
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Support for Graal/SubstrateVM [27], but also to the optimized Build Time Metadata 

Processing [28] executing as much processing as possible at build-time rather than at 

runtime resulting in less memory usage and faster start-times as only the classes that are 

needed are loaded into the production JVM. Quarkus also optimizes Reflection [29] by 

reducing its usage or, in some instances, even avoiding it altogether. In addition, using a 

technique called Native Image Pre Boot [30,31], Quarkus pre-boot as much of the 

framework as possible during the native image build process, allowing the resulting 

native image to have executed most of the startup code, that otherwise a typical 

application would need to run at every application's spin-up, and serialized the result into 

the final executable, resulting in faster startup times [27]. Figure 3 illustrates the native 

image build process previously described. Figure 4 illustrates a simplified representation 

of GraalVM architecture in relation to the Truffle Framework. 

Providing native support to Kubernetes, thanks to its built-in Docker images and 

Kubernetes extensions, Quarkus is defined as "K-Native" or "Cloud-Native". 

 

 

Figure 3 - Image build-time process [31] 
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Figure 4 - Simplified representation of GraalVM Architecture and Truffle framework [31] 

2.3 Data interchange formats 

Efficient mechanisms for data structuring and formatting are indispensable for managing 

data traffic between services in order to ensure portability and interoperability while 

avoiding excessive bandwidth costs [32]. Serialization formats or data interchange 

formats directly impact microservices performances by (I) defining the end payload size 

of the HTTP request and HTTP response carried in the body section, (II) affecting the 

service's latency or response time as the server's serialized or deserialize the data [33]. 

Data interchange formats can be classified based on their typology: Textual formats and 

Binary Formats [8]. 

2.3.1 Textual formats 

Text-based data interchange formats are defined as such due to their textual representation 

after the serialization process. The widespread adoption of textual serialization formats 

guarantees high interoperability and flexibility [34].  This class of serialization formats is 

characterized by the ability to be human-readable [8] and human-writable [32] at the 

expense of schema support and typed data. The most notable textual interchange formats 

are XML and JSON [35].  

eXtensible Markup Language (XML) is a widely used standard format for data 

representation in applications, including Web Services, and is designed to provide 

simplicity, generality, and usability of data exchanged over the Internet [36]. Figure 5 

illustrates the data structure of an uncompressed XML message. 
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JSON [34] is a text-oriented, lightweight, human-readable data interchange format 

designed for the representation of simple data structures and associative arrays where 

messages can be organized as objects composed of key-value pairs or an array of objects 

[36].  Figure 6 shows the data structuring of an uncompressed JSON message. 

The past decade has seen an increase in JSON utilization as a textual data interchange 

format, replacing XML in many fields and becoming the industry-standard serialization 

format for the implementation of REST APIs [8].  It also has proven to provide better 

performance in terms of speed and less resource usage, even in a context where JSON is 

not native [33].  

 

Figure 5 - XML Data Structing format (uncompressed) 

 

Figure 6 - JSON Data Structuring (uncompressed) 

2.3.2 Binary Formats 

Binary data interchange formats trade human readability and interoperability in favor of 

faster serialization times and smaller payload size, as the data structure, after being 

encoded, is represented in native binary form [8]. This class of serialization protocols 

varies greatly, but they all aim to provide built-in schema support and validation and 

strongly typed data support.  

The past years have seen rapid development and interest in such technologies thanks to 

their speed and size [8]. Currently, the landscape is vast, with multiple different formats 

available such as Protocol Buffers, Cap'n Proto, FlatBuffers, and many more, as 

illustrated in Figure 7 in conjunction with their serialization and deserialization 
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performances. Figure 8 shows the space allocated after serialization, with and without 

compression.  

 

Figure 7 - Total Serialization + Deserialization Time of common Binary Serialization Formats [37] 

 

Figure 8 - Total allocated space of common Serialization Formats. Light blue shows the compressed size [37] 
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2.4 Protocol Buffers 

Protocol Buffers, formerly known as Protobuf,  are Google's language-neutral, platform-

neutral, extensible mechanism for serializing structured data [2]. Protocol Buffers have 

been designed with speed and space efficiency in mind, providing fast serialization and 

deserialization times while retaining a small memory footprint for efficient network 

bandwidth usage.  It comes with built-in mechanisms for versioning the APIs or endpoint 

interfaces, allowing the data contract to seamlessly evolve without breaking applications 

that are still built on top of legacy versions of the API. The structure of the data to be 

encoded is defined by the user through the definition of .proto file[36]. The user-defined 

data structure is subsequently compiled using the Protocol buffer compiler [38].  

2.4.1 Context and Data Separation 

Protobuf separate the context of the data from the data itself by defining the structure of 

the message in a separate config file with .proto extension [2],  allowing to reduce the 

payload size as the transmitted message contains only the data and not the context. This 

is not only important from a performance standpoint but also allows to validate the 

message against an interface. It can be observed in Figure 10 and Figure 9 the different 

message lengths of the same message encoded in JSON and using the Protobuf compiler, 

as the JSON message has to transmit the context and the data, increasing the total message 

size.  

 

Figure 9 - Example of a JSON encoded object 

 

Figure 10 - Example of a Protobuf encoded object in textual representation 
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2.4.2 Message Format 

The data is encoded using Protobuf based on a user-defined configuration known as 

messages [2]. Each message type has one or more uniquely numbered fields, and each 

field has a name and a value type, where value types can be numbers, booleans, strings, 

raw bytes, or other protocol buffer message types [36]. Figure 11 shows an example of a 

message type definition of a Person object.  

 

Figure 11 - Example of a Message Type definition [39] 

2.4.3 LEB128: Base 128 Varints 

Base 128 Varints are a method of serializing integers using a variable length of bytes [40] 

and are utilized to overcome the problem of representing varying length integer values 

[41]. This technique replaces the need to use a delimiter byte by using a single bit and is 

part of a family of encoding techniques referred to as variable-length encoding [42]. The 

encoded integer has the most significant bit (MSB) of every octet set, besides that last 

byte. This approach allows to signal whatever there are more byte to be read. The 

remaining lower 7 bits of the octet are used to store the two's complement representation 

of the number in group s of 7 bits with the least significant group first [40].  Figure 12 

shows an example of the number 300 encoded with the following technique.  
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Figure 12 - Example of the number 300 (base 10) encoded with LEB128 [40] 

2.4.4 Binary Encoding 

An example of a Person message, as shown in Figure 13, encoded using the protoc 

compiler has been illustrated in Figure 14. 

 

Figure 13 - Simplified Schema of a Person object 

 

Figure 14 - Protobuf Encoded de-structuring of the Person object based on the Person Message Schema [43] 
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3 Methodology 

This study has been conducted from a theoretical standpoint, through the use of literature 

review, as well as from a practical standpoint through the implementation of an 

experiment that aims to test, compare and outline the performance improvements aid by 

the implementation of Protocol Buffers, Google's language-neutral, binary-based 

representational data interchange formats over traditional text-based interchange format 

in a modern, Supersonic, Cloud-Native, K-Native REST-based Java Microservice endpoint. 

This section covers the details of the former, while the experiment is only briefly introduced; 

more information is provided and discussed in the Benchmarking chapter of this study.  

3.1 Information Sources 

To gather all the relevant information on the investigated subject area, as well as all the 

related work and the previous studies conducted on the topic, broad and detailed research 

has been conducted utilizing the following tools and platforms: 

1. IEEE Xplore [44] 

2. SciTePress [45] 

3. Google Scholar [46] 

4. ACM Digital Library [47] 

5. Kristianstad University Library [48] 

The above-stated resources have been sorted in descending order by degree of relevance 

of the articles used for the following study.  

3.2 Literature Search Criteria 

In order to gather pertinent results during the literature research phase of the study, a 

refined selection of keywords has been adopted. The first approach has been to utilized 

keywords directly related to the research question in order to yield and obtain the most 

accurate and relevant studies on the subject. Therefore, a combination of the keywords 

"data interchange format", "cloud-native", "k-native", "serialization formats", "inter-

service communication" was used. However, as a result of this search, very few results 

have been obtained with no specific material on the implementation or usage of binary-

based data interchange formats in REST microservices in the context of Kubernetes 

clusters. This motivated us to conduct a primary research with the help of an empirical 
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experiment to gather relevant data on the subject, as explained more in detail in section 

4.0 Benchmarking. 

3.3 Empirical approach 

The approaches provided in this thesis, aimed at improving current inter-service 

communication in high-density, K-Native Java REST-based microservice architectures, 

will be implemented, analyzed, and compared to the current industry-standard 

technology. Therefore, multiple REST API endpoints [5] will be created and tested 

utilizing both text-based and binary-based representational data interchange format 

through the use of Quarkus and GraalVM; varying data structure complexity, payload 

size, and request frequency against the different approaches will allow to investigate the 

provided approaches performances. Moreover, the testing will outline and represent 

material for discussion regarding the benefits and caveats of each approach while 

highlighting the implication that the usage of binary-based representational data 

interchange format carries and how this affects the serialization and deserialization 

performance.  

3.4 Testing environment 

The data collected during the following study has been gathered in a controlled 

environment, and each test has been executed subsequently to one another. A complete 

list of all the software used, with associated versions, is shown in Table 1, while the 

hardware specifications are shown in Table 2.   

Table 1 - Sofware specifications 

No Technology    Name Version 

1 Operating System Windows 10 Pro  v10.0.19042 Build 19042 

2 k8s cluster Kind  v0.10.0 

3 Container Orchestration Kubernetes v1.14.0 

4 Java Stack Quarkus v1.13.3.Final 

5 Binary serialization format Protobuf v1.8.1 (camel-quarkus-protobuf) 

6 RESTful Framework RESTEasy v1.13.3.Final 

7 JSON Processor Jackson V1.13.3.Final 

8 Programming Language Java SDK v14.0.1 

9 Java Runtime (VM) GraalVM GraalVM CE 21.1.0 

10 JSON Compressor Gzip v2.3.2.Final 

11 Container Platform Docker C.19.03.9 | S.19.03.8 

12 Dummy Data generator Faker V0.15 
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Table 2 - Hardware specifications 

No Part Model 

1 CPU Intel Core i9-9900K (multi-threading enabled) 

2 Motherboard MSI MPG Z390 GAMING EDGE AC 

3 GPU GeForce RTX 2080 @ 1860MHz 

4 Ram 64GB @ 3600MHz 

5 Storage Samsung SSD 970 Evo Plus 

 

3.5 Analyzed metrics 

The practical implementation of the following study will investigate the performance 

impacts of the usage of a binary-based data interchange format, such as Google's Protocol 

buffers [2], in the inter-service communication between two Java REST microservices 

endpoints in a local Kubernetes cluster. Consequently, as explained in section 1.3 and in 

more detail in section  2.3, the microservice's response time and latency, in relation to the 

serialization times, in each and every respective studied serialization formats, will be 

investigated as well as the HTTP response payload size with and without gzip [49] 

compression. Transient memory, as well as RSS during serialization, will also be 

analyzed, as been recognized to majorly impact microservices' costs.  
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4 Benchmarking 

This section aims to provide a more in-depth overview of the characteristics, components, 

and tools utilized during the execution of the practical experiment and the specifics 

regarding the data collection and its implications.  

4.1 K8s Local Cluster Environment 

To ensure the study's validity and the required level of data accuracy, as discussed in 

section 1.4.1, the experiment has been conducted in a local Kubernetes (K8s) cluster to 

simulate a deployment of a modern containerized microservice. The K8s cluster has been 

implemented using KIND (Kubernetes IN Docker) [50] and the kubernetes-cli (kubectl) 

[51]. 

"kind is a tool for running local Kubernetes clusters using Docker 

container "nodes" [17] 

4.2 Quarkus Microservice Deployment 

The Quarkus microservices have been deployed and run on the K8s cluster within a 

Docker container [52] in JVM mode [53] as well as in native executable mode [54]. Both 

the deployment have been investigated, but their performance difference has only been 

discussed in section 6.1, whereas it intersects with the subject of this study or directly 

impacts one of the analyzed metrics, as discussed in the study limitations in section 1.4. 

4.2.1 JVM-Mode Container 

The Quarkus microservices containers, regarding the creation of a containerized version 

running in JVM mode,  have been built using the built-in Dockerfile.jvm (see Appendix 

1: Docker). The container image build has been performed using Jib [55] along with the 

Quarkus extension quarkus-container-image-jib (Figure 15). The extension quarkus-

container-image-docker (Figure 16) has been used on top of Docker binary. Figure 17 

shows the maven commands used to set the quarkus.container-image.build=true flag in 

order to build the image.  

For the full docker file, please refer to Appendix 2: Docker build. 
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Figure 15 - Maven: adding quarkus-container-extension [56] 

 

Figure 16 - Maven: adding quarkus-container-image-docker extension for Docker binary [56] 

 

Figure 17- Maven: building container image [56] 

4.2.2 Native-mode Container 

The Quarkus microservices have also been compiled to a native executable [30] and then 

packaged within a container. The native executable has been built using Mandrel [57], a 

distribution of GraalVM CE. For the full docker file, please refer to Appendix 2: Docker 

build. 

4.3 Supplementary Tools 

A list of supplementary tools and software utilized to inspect, collect, or produced the 

data contained in this study has been supplied below. 

1. API Testing: Postman [58] 

2. API load testing and graphing: JMeter [59] 

3. Memory and performance analysis: JConsole [60] 

4. Sampling, profiling, and tracing: VisualVM [61] 

4.4 Test design 

The tests have been designed to investigate and enhance inter-services communications 

in modern, cloud-native, containerized RESTful Quarkus microservices by utilizing 

Google's binary-based data interchange format and compiler, as explained in section 1.3. 

As part of the investigation, two containerized microservices have been created and made 

communication through the use of lightweight REST-based mechanisms. For each testing 

scenario (see section 4.7), multiple subsequent requests have been executed in the 
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magnitude shown in Table 3 while varying the request type, the complexity of the data 

structure serialized, and the count of the generated data (see section 4.8).   

Table 3 – Testing conditions 

Data structure 

design 
Request count1 Request types2 Data generation count3 

Flat (simple) 1, 5, 50, 100 GET POST Up to to 300 000 

Nested (complex) 1, 5, 50, 100 GET POST Up to 650 

Note1: Applied only to metrics which result is measured in units of time.  

Note2: Indicates the HTTP method upon which the experiment is conducted. 

Note3: The date generation count has been set to create edge-case scenarios as well as an average scenario. 

4.5 Serialization formats 

The analyzed and compared serialization formats are JSON, as a representative format 

for the textual category, and Protobuf for the binary-based class.  

The JSON data has been encoded using the Jackson [62] serializer (see section 3.4 for 

more details). On the other hand, the Protocol buffer data has been encoded using the 

official c++ compiler.  

4.6 Compression 

The serialized data has been tested with compression enabled and disabled, using Gzip 

(see section 3.4 for more info). The compression has been executed prior to the data being 

transmitted over the wire, and the payload has been compressed through the built-in 

RESTEasy Gzip and a more efficient external implementation. An upper limit on deflated 

request body has also been applied as Quarkus specification recommends [63]. Figure 

18 shows the Gzip being enabled in the Quarkus application config file, while  Figure 19 

illustrates the HTTP compression being enabled globally.  

 

Figure 18 - Quarkus application settings: Gzip support enabled [63] 

 

Figure 19 - Quarkus application settings: Global compression setting 
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4.7 Data Structure complexity 

In order to investigate the metrics proposed in section 3.5, the REST requests have been 

composed by varying the encoded data structure. Two data structures with different 

complexity have been designed and implemented in the benchmarks to evaluate and 

highlight the impact that different data structure complexity has on the serialization 

speed, and ultimately on the response time, as well as studying which method has better 

CPU utilization as well as lower transient memory usage.    

4.7.1 Flat Approach 

The first tested data structure has a simpler composition, as it can be observed in Figure 

21, with a flat approach and no nested objects. It consists of a simple User object, with 

the following fields: uid, email, username, profilePictureURL, and age. Figure 20 

illustrates the proto definition used, while Figure 21 depicts an extract of the serialized 

JSON object collection.  

 

Figure 20 - User proto definition 

 

Figure 21 - User object serialized -  JSON response extract with dummy data 
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4.7.2 Nested Approach 

To thoroughly study, compare and ultimately evaluate whatever Google's binary 

interchange format, Protobuf, can be used to enhance inter-services communication in 

modern, cloud-native, container-first, REST-based Quarkus microservices, a more 

complex data structure has been implemented. A data structured with 4-level deep nested 

objects, inspired by PayPal's v1 API [64], has been implemented to fully stress and test 

the binary and textual representational format and serializer, as shown in Figure 22 (see 

Appendix 4: Source code).  

 

Figure 22 – Code segment (extract) of the Proto definition of the Payment nested (complex) data structure 
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4.8 Dummy Data Generation 

Since this study also aims to provide an evaluation of the payload size in respect to each 

analyzed serializer and serialization format, generating appropriate data, in regards to 

type and length, during the object construction has been determined to be essential for the 

accuracy of the study. The data had to be of the right type (string, int, float, etc.) as well 

as have the appropriate length in order to simulate a real application scenario and to avoid 

any possible compiler optimization. All the dummy data has been generated using the 

java port of the popular Ruby's faker [65] gem library. An example of the accuracy of the 

generated data using faker is shown in Figure 23. 

 

Figure 23 - Faker data generation example (JSON Response Extract) 
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5 Results 

5.1 Literature review results 

The proposed literature review results have been produced, due to the lack and scarcity 

of scientific publications and articles, at least as a result of the research conducted upon 

the authoritative libraries discussed in section 3.1, using primarily the official 

documentation provided by the authors of their respective technologies. Moreover, further 

findings have highlighted the source of the absence present in the research field and the 

reasoning behind it. The majority of the articles published in our field of interest, in 

function and regarding the scope of the research question 2 (see section 1.2),  describe 

the implication and implementation of data versioning and migration strategies of 

Google's language-neutral,  binary data interchange format, Protocol Buffers [2] in the 

context of gRPC. The explanation can be found and traced back to the fact that both 

technologies are authored by the same company, Google. In addition, H.Bagci et al. [66] 

gRPC employs Protocol buffers as their serialization format, as also stated in the official 

gRPC documentation [67]. These results have been excluded as they inherently fall outside 

the scope of this study.  This thesis, as outlined in section 1.3, analyses the interservice 

communication that is realized through the use of REST mechanisms and not RPC, as 

considered previously when discussed regarding gRPC (see Appendix 1: Microservices). 

An example of a typical microservice architecture that utilized both REST mechanism along 

with gRPC technologies can be seen in Figure 39. 

Protocol Buffers [2] are designed to be backward and forwards compatible, providing 

out-of-the-box tools to handle data evolution through an improved system of versioning 

management that allows updating existing message type definitions without breaking the 

interoperability of systems that utilize legacy or older versions of the message. This is 

realized, per specification, through the use of Reserved Fields and by the application of a 

set of Rules and Recommendations [68]. 

Reserved tags are used to communicate to the developers, as well as to the protoc 

compiler, that these tags are reserved and should not be utilized. This is extremely 

important for versioning; whereas a message type definition is updated by either removing 

or commenting out a field, future developers might re-use the same field tag. This can 

cause several issues, including but not limited to data corruption and privacy bugs as they 
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are referring to different message definitions [69]. Figure 24 shows an example of a 

message type definition being updated (the field name has been split in firstName and 

lastName), and the reserved tag is used to handle the data evolution, communicating 

future developers to not utilized the field with tag 2, as well as telling the protoc compiler 

to prevent compilation if such field would be used. Therefore through documentation as 

well as tooling support, it has been explicitly shown that the next available tag is 5. 

Reserved tags can be enumerated in multiple ways, allowing single or multiple tags to be 

reserved in a single line, as illustrated in Figure 26.  

In scenarios where guaranteeing interoperability with other services that might not 

support Protocol Buffers binary data interchange format is a necessity, Reserved tags, 

despite they may be formally correct, and the messages compile successfully, cannot 

distinguish between context ambiguities. In those cases, Reserved fields are used. Figure 

25 illustrates a case scenario where a microservice communicates with a service that does 

not support Protocol Buffers. The Protobuf message is then encoded in a textual 

serialization format such as JSON. Even though in the Protocol Buffer context, in the 

updated definition of our message (v2), the field fullName has a different meaning and 

interpretation than the one in the first version (v1), when the message is serialized in 

JSON, the meaning and context are lost. Figure 42 illustrates the usage of Reserved fields 

over Reserved tags to address the previously described issues.  

Along with these tools, a set of Rules and Recommendations [68] is provided in order to 

guarantee seamless versioning and data migration. A list with all the rules and 

recommendations provided by the Protobuf authors can be found in Appendix: 

Theoretical work.  

 

Figure 24 - Example scenario of a proto message type definition update - field name is split into firstName and 

lastName 
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Figure 25 - Example scenario of a proto message type definition update encoded to JSON – context is lost 

 

Figure 26 - Example scenario of a proto message type definition update - to prevent loss of context in case of encoding 

to textual serialization format, the reserved field is used over the reserved tag 

5.2 Empirical results 

This section exposes the results obtained from the data gather executing the benchmarks 

discussed in section 4.4. The response time benchmarks, together with the request 

processing times benchmarks, have been executed 100 times sequentially with an initial 

pre-request in order to obtain accurate data samples. Where applicable, the standard 

deviation has been calculated and graphed accordingly in the form of error bars. More 

detailed graphs and charts have also been supplied as supplementary material and can be 

found in Appendix 3: Supplementary result materials. 

5.2.1 Response time 

The response time of two containerized microservice has been tested through the use of 

the benchmarks discussed in section  4.4, and the results have been proposed below.  This 

section analyzes and compares the behavior of the system when a flat data structure and 

a nested data structure (see section 4.7) are used.  
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Figure 27 - Response time benchmark results - GET / Data Generation 5 / Uncompressed / cache vs no-cache 

comparison 

5.2.2 Request Processing Time 

The Request Processing Time of a containerized microservice has been tested through the 

use of the benchmarks discussed in section  4.3, and the results have been proposed below.  

The following test has been performed on the nested data structure (see section 4.7.2) 

with a data generation count of up to 650 elements (see section 4.4). 

 

Figure 28- Request Processing Time benchmarks Results / POST /Compressed / no-cache / Data generation count 

comparison over time 
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5.2.3 Payload size 

The following benchmarks have been designed to test and evaluate the different request 

and response payload sizes when (I) data structure and complexity (see section 4.7) 

increments, and (II)  the object count increases.  

 

Figure 29 - Paylod size benchmark results / Data generation count 5 / flat data structure / compression comparison 

 

Figure 30 - Paylod size benchmark results / flat data structure / data generation count comparison 
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Figure 31 - Paylod size benchmark results / nested data structure / data generation count comparison 

5.2.4 Memory analysis 

K-native applications are required to provide a small memory footprint in order to reduce 

cloud costs as well as to provide the necessary performances, demanding every instance 

to be as small and as efficient as possible. To further reinforce and motivate the reasonings 

provided in section 6.0, the memory of each microservices has been studied with the tools 

described in section 4.3. 

 

Figure 32 - Memory analysis of the benchmark illustrated in Figure 43 during the JSON Serialization 
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Figure 33 - Memory analysis of the benchmark illustrated in Figure 43 during the Protobuf  Serialization 

 

Figure 34 - Memory analysis of the benchmark illustrated in Figure 44 during the JSON unsuccessful  Serialization 

 

Figure 35 - Memory analysis of the benchmark illustrated in Figure 44 during the Protobuf Serialization 
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6 Discussion 

6.1 Research Question 1 

This study suggested that a modern, Supersonic, Cloud-Native, K-Native REST-based 

Java microservice endpoint can be enhanced, from a performance standpoint, by utilizing 

Google's language-neutral, platform-neutral, binary-based data interchange format over 

a traditional textual serialization format such as JSON or XML. The findings proposed in 

section 5.2 suggest that the implementation of Protobuf as a binary data interchange 

format to be utilized across multiple services, through the use of lightweight RESTful 

mechanism over the HTTP Protocol, does, in fact, lead to performance improvements in 

regards to response time, payload size and transient memory usage. However, it does not 

come without caveats. Protocol buffers provide a higher serialization and deserialization 

speed compared to JSON when serialized with Jackson, as shown in Figure 7 (see 2.3.2 

Binary Formats); however, in the scope of this study, as illustrated in Figure 27, the 

increase in serialization speed is negligible as it leads to only less than 2ms improvements 

in service's response time corresponding to an 8.13% improvement across the board. It 

must also be considered that in containerized microservices, where computational power 

is expensive, caching policies are a very common solution to easily reduce resource 

consumptions. It can be observed, in Figure 27, that the implementation of caching 

policies is extremely effective, and in our testing aid to the same response time regarding 

the serialization format in use, while providing even better metrics than baseline due to 

the data been cached rather than re-computed. The most notable improvements have been 

observed during the execution of Request Processing Time benchmarks, through the use 

of POST requests, where the deserialization process was investigated. As previous studies 

suggested, where benchmarks have been proposed in section 2.3.2, the major difference 

measured in execution times between Protocol buffers and JSON/Jackson has been 

recorded during the deserialization phase rather than the serialization phase, as JSON 

appeared to be slower to be parsed rather than to encoded. In these scenarios, our 

benchmarks, as discussed in section 5.2.1, and depicted in Figure 28, showed an 

improvement of 25.1%, with a latency reduction in the best case observed of 164.3ms.  

The payload size, on the other hand, according to our test results, gained a considerable 

improvement due to the binary nature of Protobuf when compared to JSON. Protocol 
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buffers outperformed JSON in almost every one of our tests, providing significantly 

smaller objects, with the only exception being when serializing very small objects with 

low objects count as visible in Figure 29. This indicates that this is the point where the 

extra metadata, added by Protobuf to later deserialize the data, occupies more space than 

the advantage gained from the binary representation of the data. The binary format 

provided, at worst, 25.80% smaller payloads, as shown in Figure 30 with a best-case 

scenario of 58.2% smaller serialized objects compared to JSON when only compressed 

with Gzip, as depicted in Figure 29, for flat data structures with a low object count. 

Moreover, the payload size benchmark results of the nested data structure revealed an 

improvement over JSON, in the worst-case scenario of 64.54% smaller object's size and 

a remarkable best-case scenario of 72.28% smaller payloads. It is also necessary to point 

out, due to the testing design created to provide an average-case as well as edge-case 

scenarios, that in every test conducted, JSON wasn't able to serialize the object within 

the set memory limit requirements; in these cases, the value 0 has been marked 

accordingly on the provided graphs.  

 The efficiency of Protocol buffers, when compared to JSON, has been observed to be 

increasing with the (I) complexity and (II) size of objects. As shown in section 5.2.3, the 

higher the complexity, especially in terms of nested objects, of the data structure to be 

encoded, the higher the difference in system latency has been registered, especially during 

the deserialization phase, partially for the reasons previously discussed. Further findings, 

during our memory analysis, discussed in section 5.2.4, reinforced what our study has 

suggested; despite the memory usage appears to have a very similar profile, as can be 

observed in Figure 32 and Figure 33, the Protobuf compiler seems to be utilizing 

memory more efficiently. Interestingly, in Figure 33, Protoc uses more heap memory 

than Jackson, as shown in Figure 32, but still within the 400MB, pre-imposed memory 

limit. Subsequently, on the contrary, when undergoing a more demanding test, with a 

more complex and bigger object, that ultimately resulted in a big 43320KB binary blob, 

as shown in Figure 30, it completed the serialization using more transient memory but 

requesting (allocating) less heap memory allowing it to fully complete the serialization; 

while Jackon allocated more memory and the Docker's memory constraints, killed the 

process before the serialization was completed. 
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6.2 Research Question 2 

The prerogative and end goal of microservices, as broadly discussed in section 2.0 and in 

more detail later in section 2.1, is to design a system as a collection of loosely coupled 

services that are self-contained and provide only a specific business functionality. 

Traditional code-heavy monolith applications are, in this new way of designing 

architectures, break down into independently, more serviceable, deployable 

microservices that are typically deployed as containers on container clusters [10]. This 

novel approach of designing systems mitigate, or in some cases, completely eliminated 

the risk of single-point-of-failure; however, in an architecture where multiple applications 

have to communicate and cooperate to produce a result, new communications challenges 

arise. One of the most notable and historical issues that have been afflicting microservices 

since their novel implementation has been the raw material that microservices work with 

and manage: data. Due to its intrinsic nature, data is subjected to change and be updated; 

this is especially true in RESTful APIs and microservices,  where a single service can 

unexpectedly change its interface and inadvertently breaks the contract that it prior 

established with its consumers. In professional enterprise scenarios, as discussed in this 

thesis, being able to proactively react to data changes and evolutions by implementing 

means of versioning management that allows your API to evolve with backward 

compatibility is essential. The analyzed data interchange format, Protobuf, provides such 

functionalities out-of-box [68]. The built-in message-type definition also allows 

validating incoming and outgoing messages against a specific .proto definition, as 

discussed in section 2.4. In professional environments, where system robustness and type-

safe are a necessity, messages have to be strongly typed to ensure a smooth experience 

and eliminate unexpected bugs and reduce the risks of exploits at runtime. 
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7 Conclusion 

The study showed promising results regarding the implementation of Google's language-

neutral, platform-neutral, extensible mechanism for serializing structured data in modern, 

cloud-native, container-first, REST-based Quarkus [1] microservice architectures. The 

empirical results obtained from our testing confirmed our hypothesis formulated in the 

research questions about the effectiveness of a binary-based serialization format in 

reducing the response time and payload size, even if not at the expected degree. This 

research provided a novel insight into the application of Protocol Buffers in containerized 

Quarkus microservices that was not present in the research field prior.  

The gathered findings can be summarized, in regards to the research questions initially 

formulated, as follows: 

R1: From a performance standpoint, how can the response time and payload size be 

reduced in a modern, Supersonic, Cloud-Native, K-Native REST-based Java 

Microservice endpoint? 

The response time and payload size can be reduced by utilizing Google's binary data 

interchange format rather than traditional textual serialization formats.  

R2: How can a strongly typed binary-based representational data interchange format 

with schema support improve versioning management, data evolution, and migration in 

microservices? 

Protocol Buffers provide an out-of-the-box mechanism to update the message type 

definitions defined in .proto files. This allows easy message versioning as a means to 

react to data evolution with backward compatibility as well as data migration.  

7.1 Future Work 

As briefly discussed in section 1.4, future work on this subject can be done by: 

1. Deploy the benchmarks on online K8s clusters, such as the IBM Cloud 

Kubernetes Service [70], in order to obtain more accurate data as well as to 

investigate platform-specific service optimizations. 

2. Compare other's binary data interchange formats, as disclosed in section 2.3.2. 
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Appendices 

Appendix 1: Microservices 

 

Figure 36 - A microservice exposing its functionality over a REST API and a queue [8] 

 

Figure 37 - A traditional three-tiered architecture [8] 
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Figure 38 - Each microservice, if required, can encapsulate presentation, business logic, and data storage functionality 

[8] 

 

Figure 39 - Example of Microservice architecture that bundles front-end and microservices with API gateways, REST 

and gRPC [71] 
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Appendix 2: Docker build 

This section contains the files used for the Docker build. The full files in their integrity 

are also provided in this section.  Figure 40 shows the content of the file Dockerfile.jvm 

while  Figure 41 illustrates the content of the file Dockerfile.native used for building the 

native image.  

 

Figure 40 - NVM-mode docker file 

 

Figure 41 - Native-mode docker file 
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Appendix 3: Supplementary result materials 

This appendix reports supplementary results materials, including but not limited to 

graphs, charts, tables, and figures.  

Theoretical work 

This section contains supplementary material related from the conducted literature 

review. Figure 42 shows an example of the usage of the reserved field over the reserved 

tag to preserve the context.  

 

Figure 42 - Example scenario of a proto message type definition update - to prevent loss of context in case of encoding 

to textual serialization format, the reserved field is used over the reserved tag 

Table 4 - Rules and Recommendations provided by the Protobuf Authors when updating a message type definition [68] 

Recommendation 

No. 
Description 

0 Don't change the field numbers for any existing fields. 

1 Any new fields that you add should be optional or repeated 

2 

Non-required fields can be removed, as long as the field number is not used again in your 

updated message type. You may want to rename the field instead, perhaps adding the prefix 

"OBSOLETE_", 

3 

A non-required field can be converted to an extension and vice versa, as long as the type and 

number stay the same 

4 int32, uint32, int64, uint64, and bool are all compatible 

5 

sint32 and sint64 are compatible with each other but are not compatible with the other 

integer types. 

6 string and bytes are compatible as long as the bytes are valid UTF-8. 

7 

Embedded messages are compatible with bytes if the bytes contain an encoded version of the 

message. 

8 fixed32 is compatible with sfixed32, and fixed64 with sfixed64 

9 For string, bytes, and message fields, optional is compatible with repeated 
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Empirical Experiment 

This section provides supplementary graphs of the conducted experiment, including but 

not limited to, the request and response header and body size. Figure 43 depicts 

benchmark results regarding the payload size with a data generation count of 100 000 

elements while Figure 44 shows the payload size when the data count is increased to 300 

000 elements. Figure 45 illustrates the payload size when nested objects are serialized 

and presents a comparison of the analyzed data interchange formats.  Figure 46 represents 

the same benchmark but with a higher element count (325), while Figure 47 compares 

the latter when the data generation count is set to 650 elements.  

 

Figure 43 - Payload size benchmark results / Data Generation Count 100 000 / flat data structure / data presented 

with header and body size 
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Figure 44 - Payload size benchmark results / Data Generation Count 300 000 / flat data structure / data presented 

with header and body size 

 

Figure 45 - Payload size benchmark results / Data Generation Count 5 / nested  data structure / data presented with 

header and body size 
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Figure 46 - Payload size benchmark results / Data Generation Count 325 / nested  data structure / data presented with 

header and body size 

 

Figure 47 - Payload size benchmark results / Data Generation Count 650 / nested  data structure / data presented with 

header and body size 
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Appendix 4: Source code 

This appendix reports the source code of the following study, including the generate 

classes compiled by the Protobuf protoc compiler. Figure 48 shows the message type 

definition of the nested data structure used for the benchmarks. 

Source code available at: https://github.com/espressoshock/da399b-supplementary-

material-public [72] 

Source code of protoc compiled classes: https://github.com/espressoshock/da399b-

supplementary-material-public/tree/main/protoc 

 

Figure 48 - Proto definition of the Payment nested (complex) data structure 

https://github.com/espressoshock/da399b-supplementary-material-public
https://github.com/espressoshock/da399b-supplementary-material-public
https://github.com/espressoshock/da399b-supplementary-material-public/tree/main/protoc
https://github.com/espressoshock/da399b-supplementary-material-public/tree/main/protoc
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