

Independent project (degree project), 15 credits, for the degree of
Degree of Bachelor of Science (180 credits) with a major in
Computer Science
Spring Semester 2020
Faculty of Natural Sciences

Evaluating Methods for Optical Character

Recognition on a Mobile Platform

Comparing standard computer vision

techniques with deep learning in the context

of scanning prescription medicine labels

Jonathon Bisiach
Matej Zabkar

Authors
Jonathon Bisiach & Matej Zabkar

Title
Evaluating Methods for Optical Character Recognition on a Mobile Platform: Comparing standard
computer vision techniques with deep learning in the context of scanning prescription medicine labels

Supervisor
Kamilla Klonowska

Examiner
Ola Johansson

Abstract
Deep learning has become ubiquitous as part of Optical Character Recognition (OCR), but there are
few examples of research into whether the two technologies are feasible for deployment on a mobile
platform. This study examines which particular method of OCR would be best suited for a mobile
platform in the specific context of a prescription medication label scanner. A case study using three
different methods of OCR – classic computer vision techniques, standard deep learning and specialised
deep learning – tested against 100 prescription medicine label images shows that the method that
provides the best combination of accuracy, speed and resource using has proven to be standard seep
learning, or Tesseract 4.1.1 in this particular case. Tesseract 4.1.1 tested with 76% accuracy with a
further 10% of results being one character away from being accurate. Additionally, 9% of images were
processed in less than one second and 41% were processed in less than 10 seconds. Tesseract 4.1.1
also had very reasonable resource costs, comparable to methods that did not utilise deep learning.

Keywords
Optical Character Recognition, Deep Learning, Tesseract, EAST, Testing, Performance, Android

Contents
Abbreviations & Acronyms ... 6

1 Introduction ... 7

1.1 Problem and motivation .. 7

1.2 Background ... 8

1.2.1 Optical Character Recognition .. 8

1.2.2 Deep Learning ... 9

1.3 Research questions .. 10

1.4 Aim and purpose ... 11

1.5 Limitations .. 11

1.5.1 Prescription medicine labels .. 11

1.5.2 Hardware limitations ... 11

1.5.3 Android version limitations ... 11

1.5.4 Deep learning models .. 12

2 Methodology ... 12

2.1 Literature search ... 12

2.2 Case study design and implementation ... 13

2.2.1 Dataset ... 14

2.2.2 Testing parameters .. 15

2.2.3 Android application ... 17

2.2.4 Methods for OCR: Tesseract settings .. 18

3 Literature review ... 19

3.1 Related work ... 19

3.2 Three approaches to OCR ... 20

3.2.1 Classic computer vision techniques: Tesseract 3.05 21

3.2.2 Standard deep learning: Tesseract 4.1.1 .. 22

3.2.3 Specialised deep learning: OpenCV’s EAST and Tesseract 4.1.1 22

4 Results & analysis ... 24

4.1 Accuracy ... 25

4.2 Time .. 25

4.3 Resource use ... 29

5 Discussion ... 33

5.1 Label examples and analysis .. 33

5.2 Problem labels .. 36

6 Conclusion ... 37

6.1 Research answers .. 37

6.2 Ethics, sustainable development and societal aspects .. 37

6.3 Future work ... 38

7 References ... 39

8 Appendices .. 43

8.1 Appendix 1: Neural network terminologies ... 43

8.1.1 Feedforward neural networks .. 43

8.1.2 Convolutional Neural Networks (CNN) .. 43

8.1.3 Fully-Convolutional Network (FCN) .. 45

8.1.4 Recurrent Neural Network (RNN) .. 46

8.1.5 Long Short-Term Memory (LSTM) .. 47

8.2 Appendix 2: Case study details ... 47

8.2.1 Mobile phone hardware specifications: ... 47

8.2.2 Code repositories ... 48

8.2.3 Pre-testing results .. 48

8.2.4 Tessreact & EAST libraries ... 48

8.2.5 Tesseract options ... 48

8.3 Appendices 3: Test results .. 50

8.3.1 Test results ... 50

8.3.2 Accuracy .. 50

8.3.3 Time ... 53

8.3.4 Native heap memory ... 55

8.3.5 Image size & number of bound boxes created by EAST 58

6

Abbreviations & Acronyms

Abbreviation

or acronym

Meaning First used

OCR Optical Character Recognition 1

NLM National Library of Medicine 1.1

CCVTs Classic Computer Vision Techniques 1.2.1

StanDL Standard Deep Learning 1.2.1

SpecDL Specialised Deep Leaning 1.2.1

EAST Efficient Accurate Scene Text detector 1.2.1

CPU Central Processing Unit 2.2.2

CSV Comma Separated Values file 2.2.3

OSD Orientation and script detection 2.2.4

LSTM Long Short-Term Memory 2.2.4

DCNN Deep Convolutional Neural Networks 3.1

CNN Convolutional Neural Networks 3.1

RNN Recurrent Neural networks 3.2.2

FCN Fully-Convolutional Network 3.2.3

NMS Non-Maximum Suppression 3.2.3

MLP Multi-Layer Perceptron 8.1.2

RGB Red-Green-Blue 8.1.2

ReLU Rectified Linear Unit 8.1.2

7

1 Introduction

Optical Character Recognition (OCR) is the electronic or mechanical conversion of

images of typed, handwritten or printed text into machine-encoded text. Deep learning

is part of a broader family of machine learning methods based on artificial neural

networks that imitates the workings of the human brain in processing data and creating

patterns for use in decision making. Deep learning has become ubiquitous as part of

OCR, but there are few examples of research into whether the two technologies are

feasible for deployment on a mobile platform.

The purpose of this thesis is to research and analyse which approach to OCR performs

the best in the context of a mobile application using image recognition. Specifically, in

an application developed to accurately identify prescription drugs and to help patients in

avoiding situations where prescribed medication may be harmful when taken with certain

other prescription medication.

1.1 Problem and motivation

In 2017 more than 6.6 million Swedes took at least one prescription medication,

corresponding to approximately 66% of the population. The largest proportion of these

users is found in age groups 65 years and above [1]. In the US, preventable medical errors

are the third leading cause of death after heart disease and cancer, with the largest subset

of medical errors being medication error [2] [3]. On top of this, Sweden has an aging

population – the percentage of Swedes above the age of 65 has grown from under 12%

in 1960 to over 20% in 2018 [4].

In 2016 the National Library of Medicine (NLM) hosted the Pill Image Recognition

Challenge as part of its research and development in Computational Photography Project

for Pill Identification (C3PI). The Challenge asked for submissions from teams that

would contribute to the creation of a software system that can match photos taken by a

smartphone to the NLM database of high-resolution prescription pill images. The winner

of this competition, Zeng et al [5] produced an application that recognised the correct pill

within the top-5 results at 83% accuracy. Delgado et al [6] later demonstrated it was

possible to produce results within the top-5 at 94% accuracy under comparable, though

not identical configurations.

8

1.2 Background

1.2.1 Optical Character Recognition

One facet of image recognition technology is OCR, or the electronic or mechanical

conversion of images of typed, handwritten or printed text into machine-encoded text,

whether from a scanned document, a photo of a document, a scene-photo or from subtitle

text superimposed on an image [7]. After text is detected at a line/word level there are

many methods that can be used to convert the text which generally come from three main

approaches [8]:

1. Classic Computer Vision Techniques (CCVTs), typically involving applying

filters to make characters stand out from the background, contour detection to

recognise the characters individually and image classification to identify the

characters.

2. Standard Deep Learning (StanDL), using an artificial neural network that

combines multiple nonlinear processing layers that uses simple elements

operating in parallel.

3. Specialised Deep Learning (SpecDL) that uses such technologies as

convolutional-recurrent neural networks, such as or Semi-Supervised End-to-End

Scene Text Recognition (SEE) and Efficient Accurate Scene Text detector

(EAST).

The first recorded uses of this technology can be traced as far back as the 19th century in

reading devices for the visually impaired. In 1904 Emanuel Goldberg (1881 - 1970)

developed a machine that read characters and converted them into standard telegraph code

(and would later develop an OCR device for searching microfilm archives that would be

acquired by IBM) [9], while around the same time Edmund Fournier d'Albe (1868 - 1933)

developed a handheld scanner (see Figure 1) that, when moved across a printed page,

produced an audio tone that corresponded to specific letters or characters [10].

9

Figure 1- A detail view of d'Albe's 'Octophone' scanning device, invented in 1913. [11]

1.2.2 Deep Learning

Deep learning, also known as deep structured learning or differential programming, is a

far more recent development in technology, the concept of which was first presented as a

part of a broader family of machine learning methods based on artificial neural networks

that imitates the workings of the human brain in processing data and creating patterns for

use in decision making in 1986 [12]. Machine learning can be loosely described as a self-

adaptive algorithm that gets increasingly improved analysis and patterns with experience

or with newly added data, and deep learning utilises a hierarchical level of artificial neural

networks to carry out the process of machine learning. The artificial neural networks are

built like the human brain, with neuron nodes connected together like a web, as shown in

Figure 2. While traditional programs build analysis with data in a linear way, the

hierarchical function of deep learning systems enables machines to process data with a

nonlinear approach. Deep learning allows computational models that are composed of

multiple processing layers to learn representations of data with multiple levels of

abstraction [13].

Figure 2- Illustration of two traditional neural networks: a Single-Layer Perceptron (SLP) and a Multi-Layer

Perceptron (MLP).

10

One of the biggest advantages of using deep learning over standard machine learning is

its ability to execute feature engineering without additional resources. In this approach,

an algorithm scans the data to identify features which correlate and then combine them to

promote faster learning without being told to do so explicitly, as illustrated in Figure 3.

Another advantage is the elimination for the need of expensive and time-consuming data

labelling as the algorithms can learn unsupervised or semi-supervised [13].

Figure 3- Traditional machine learning flow vs Deep learning flow.

These methods have dramatically improved the state-of-the-art in image classification,

object detection, object tracking, pose recognition, video analytics, synthetic picture

generation and many other domains such as drug discovery and genomics. Deep learning

approaches like neural networks can be used to combine the tasks of localising text, or

text detection, in an image along with understanding and converting the text into machine

language, or text recognition.

1.3 Research questions

Given that there are several methods to accomplish OCR, our research question is:

In the context of a mobile application using image recognition to scan prescription

medication labels, which approach to OCR provides the best performance?

In seeking to answer this question, additional arising issues will need to be addressed,

such as:

• What is meant by ‘performance’ in this setting and what criteria can be used to

measure it

• To what extent is it possible to design a fair comparison of approaches to reading

text that are radically different, and

• What potential extraneous factors could skew the results of performance tests.

11

1.4 Aim and purpose

Incorporating OCR into a mobile application that simply and easily can scan a

prescription medication container, accurately read the label and provide the user with

information regarding the medication could prove to be a valuable tool in reducing the

number of preventable medical errors. To that aim this research seeks to compare three

methods of OCR deployed in a mobile device in order to determine not only which

method provides the best performance in terms of accuracy but also in regarding memory

consumption, power drain and speed.

1.5 Limitations

1.5.1 Prescription medicine labels

The dataset used in the practical case study (see 2.2.1) consists of scanned prescription

medicine labels of varying size, resolution and quality. These are all flat scans in two

dimensions. As such, how the three methods of OCR process non-planar or non-paper

objects cannot be considered.

1.5.2 Hardware limitations

Testing and analysis of the three methods of OCR is to be conduction exclusively on

Android mobile platforms. No consideration could be given to other platforms such as

iOS. The primary mobile device used to conduct the case study is a Huawei P30 (for

hardware specifications see Appendix 2: Case study details). No other Android devices

could be considered due high cost and restrictions stemming from COVID-19.

1.5.3 Android version limitations

Testing of the three methods of OCR on the Android platform will be limited to Android

version 10.0. Both in Sweden and worldwide Android versions 9.0 and 10.0 are the most

commonly used, with 29.92% and 41.97% of Swedish, and 32.43% and 22.06% of

worldwide Android using version 9.0 and 10.0 respectively [14] (see Figure 4). Rather

than test the three methods of OCR on every Android version, the decision was made to

conduct tests on only the most used version of platform in Sweden.

12

Figure 4- Distribution of Android versions in Sweden and worldwide.

1.5.4 Deep learning models

The choice was made to use pre-trained models Tesseract 4.1.1 and EAST instead of

training these neural networks. This decision was made after reading Tesseract’s

documentation that advised that training the neural networks could potentially take weeks

alone [15], and initial testing that showed the pre-trained neural networks were

abundantly fit for purpose.

2 Methodology

This study has been conducted both through theoretical research and practical

implementation of OCR and deep learning, following the acquisition of prescription

medication labels forming the test dataset.

2.1 Literature search

Deep learning and especially OCR are by no means new technologies and thus have been

the subject of a substantial amount of academic research in a wide variety of applications,

both individually and in collaboration. However, as shown below, the alliance of these

two technologies on mobile platforms is a more recent development, with the majority of

academic research being focused more upon the feasibility and the accuracy of the results

rather than performance.

A search of the following keywords on Summon@HKR yielded a substantial number of

results even when filtered for peer-reviewed content. The number of results when

conjoining search terms reduces significantly, as shown in Figure 5:

13

Figure 5- The number of search results using the Summon@HKR platform showing the crossover when search using

joint search terms.

When using the conjoined search term ‘optical character recognition AND deep learning

AND mobile’, there was a total yield of 409 articles at the time of writing. Using alternate

search terms such as ‘OCR’, ‘optical character reader’, ‘DL’ or ‘machine learning’ in

various combinations produced no more results than the 409 as shown in Figure 5. When

the search terms used were then abutted with ‘performance’, this narrows the pool to 340

peer-reviewed results at the time of writing. However, of these 340, only a handful – less

than five – could be considered to explore subjects related to different approaches to OCR

including deep learning on mobile platforms, and only one of these considered

performance as a primary concern as well as accuracy.

The Summon research was integrated with an investigation on Kristianstad University’s

Databases: the ACM Digital Library, ScienceDirect, SpringerLink, the Institute of

Electrical and Electronics Engineers digital library and Wiley Online Library.

2.2 Case study design and implementation

This section describes the practical component of the thesis: a case study for testing three

different methods of OCR on the Android platform to measure the accuracy and

performance of each method.

One of the challenges of detecting and reading text from prescription medication labels

is the same as detecting and reading text from random places in a natural scene:

14

• Text density: on a standard printed/written page, text is dense, while on a medicine

label the text can be sparse.

• Structure of text: text on a page is structured, mostly in strict rows, while text on

a medicine label be scattered and may be horizontal or vertical.

• Fonts: printed fonts in standards texts are uniform, while a medicine label may

have many different, sometimes stylised fonts and text sizes.

• Artifacts: Depending on the quality of the image and the design of the label, the

image can be noisier and contain more artifacts than a standard text image.

• Location: medicine labels can include cropped/centred text and text that may be

located in random locations in the image [16].

This means that deep learning approaches specialised for use in text detection in natural

scenes, such as OpenCV’s EAST, can also be used to great effect in detecting text in

images of medicine labels.

2.2.1 Dataset

In order to test the three methods of OCR, a large sampling of prescription medicine

labels was required. Acquiring this proved to be more challenging than anticipated.

Initially the Swedish organisations Apoteket and Farmaceutiska Specialiteter i Sverige

(FASS) were contacted for assistance, but this proved fruitless. A substantial repository

of prescription medicine labels was found online at the NLM [17], but this repository was

structured in such a way that each label was contained in the form of a JPEG file in a

folder along with several other image JPEGs, such as chemical compound structures,

various dosage charts, manufacturer logos, and other information, as per Figure 6.

Accordingly, there were 39,603 folders containing a total of 216,062 images. There was

no uniform naming convention to these files to allow for simple extraction of the label

images exclusively, with each folder was named in hexadecimal code according to the

NLM’s prescription medicine sorting Application Programming Interface (API).

15

Figure 6- An example of the content of one of 39,603 folders in the NLM repository.

From these 216,062 images, the goal was to obtain a minimum of 10,000 viable images

of prescription medication labels.

The observation was made that of each of the prescription medication labels contained a

barcode. An algorithm that scans through images searching for vertical and horizontal

lines, indicative of a barcode, was created in Java using Aspose.BarCode. At each pass,

if no barcode has been found, the image was rotated by 45 degrees and scanned again up

to a maximum of four times.

Using this method, in approximately six hours 12,455 images were filtered. Out of these,

10 were unusable corrupted JPEGs, and after a manual sorting, a further 256 images were

false positives (2.06%), leaving a dataset of 12,189 label images. From this data a random

selection of 100 images to use in the case study was obtained using a Java program that

used a modulo method in order have the widest variety of images possible.

2.2.2 Testing parameters

In terms of measuring the performance of the three methods of OCR, the parameters that

are being assessed as are follows:

• Time: the taken for each individual image to be scanned and the total time taken

for all images in the dataset to be scanned.

• Accuracy: a sample of 100 images for each of the three methods programmatically

checked against a list containing the medicine names in each image for accuracy

of the text recognition, and the findings are extrapolated as a percentage. A result

16

was deemed positively accurate if the correct name of the medication appears in

the scanned text (see Figure 7), whereupon the outputted text can be cross-

referenced with a database of prescription medications in a real-world scenario.

A result was deemed a ‘near miss’ if the output is one character away from being

correct, which was checked manually.

• Central Processing Unit (CPU) usage: Average percentage of and CPU usage over

the time taken to scan 100 images as well as a range of CPU use.

• Space: the minimum and maximum amounts of native memory heap used over

the time taken to scan all images in the dataset, and as an average over time.

Native memory was selected as a parameter over other memories as the Tesseract

and EAST libraries are written in C and C++ code, and use only native memory.

• Power consumption: the amount of power consumed as a percentage of total

battery capacity over 100 images scanned.

Figure 7- An example of a prescription medicine label (left) and the OCR output (right) using Tesseract 3.05.

The decision was made to conduct tests using 100 images rather than the full dataset of

12,189 was made due to the consistency of the results irrespective of the size of the testing

sample and the time it took to process the results (see Table 7).

17

2.2.3 Android application

An application built in Android Studio serves to ‘host’ the three methods of optical

character recognition, give an output to the scanned images in the form of plaintext and

to provide performance data on each method as per a list of selected parameters (see

2.2.2). As such, the application must be capable of:

• accessing sample images stored in devices' external storage as per typical mobile

photo storage

• recording the duration of processing of each individual image and the total

processing duration of the sample data

• writing results to a log folder

• logging memory information, and

• recording power consumption.

To that end, the Android application designed to house the methods for OCR also

measures the performance of the working application using the tools Android Profiler and

Battery Historian. The tests are conducted in two phases:

1. The first test phase involves profiling performance parameters and accuracy (see

2.2.2) with the phone connected to a PC via a USB cable. This involves:

a. starting the testing application, an Android Package (APK) file

b. starting the Android Profiler tool on the PC

c. commencing scans of the 100 dataset images

d. exporting the test results to the PC

2. The second test phase is solely for measuring power consumption where the phone

is not connected to a power source. This involves:

a. resetting battery statistics

b. commencing scans of the 100 dataset images

c. dumping battery data onto the PC

d. creating a bug report from the raw data

e. importing data into the Battery Historian tool

In addition to the fact that the power consumption test could only be done with the phone

not being connected to a power source, tests are done in two parts address two of the sub-

questions raised in 1.3: testing all performance parameters at once significantly affected

the time it took to process images during initial testing phases.

https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/topic/performance/power/setup-battery-historian

18

Each test outputs a log folder containing:

• scan times for each individual image are presented as a list with the corresponding

image number contained in one Comma Separated Values (CSV) file

• CPU and memory usage are presented graphically using Android Profiler

• power consumption is contained in a Docker file, and

• for measuring accuracy, the resulting text output from a scanned image is checked

against an array list in code imported from CSV file containing the names of

medicines.

2.2.4 Methods for OCR: Tesseract settings

Tesseract is the OCR engine used in various applications in testing the three approaches

to OCR for the case study (see 3.2). As the purpose of the experiment is to compare the

performance of a CCVT with two methods of OCR that incorporate deep learning, the

version that is used for the purposes of the experiment is the latest 3.0x version, 3.05

(released December 2015). Tesseract gives developers a number of options for scanning,

including the Tesseract engine, segmentation and dictionary options (see Appendix 2:

Case study details). In order to evaluate which options would produce the accurate

results, subset of 10 images were scanned and assessed. As a result, Tesseract 3.05 was

deployed using the default engine, optimised for sparse text with orientation and script

detection (OSD), and the dictionary disabled.

The same segmentation developer options are available in Tesseract 4.1.1 as are in

version 3.05 but with some novel engine settings introduced in version 4.1.1 (see

Appendix 2: Case study details), and the same subset tests were conducted in order to

evaluate which options gave the best accuracy. As a result, for testing StanDL, Tesseract

4.1.1 was deployed using the Long Short-Term Memory (LSTM) engine, optimised

assuming the scanned image was a single uniform block of text, and the dictionary

disabled.

In testing SpecDL, Tesseract 4.1.1 was deployed using the LSTM engine, optimised

assuming the scanned image was a single word of text, as per the bound boxes provided

by EAST, and the dictionary disabled.

19

3 Literature review

The literature review aims at investigating previous work in the field as well as

establishing the foundation for the proposed case study in consideration of the scarcity

on academic research given to this specific area.

3.1 Related work

In 2019 Benaddy et al. employed Deep Convolutional Neural Networks (DCNN) (see

Appendix 1: Neural network terminologies) in order to improve the accuracy in

identifying Tifinagh characters [18]. This technique involves using a deep learning

algorithm which can take in an input image, assign importance to various aspects/objects

in the image and be able to differentiate one image from the other. This proposed system

was tested on data set of approximately 25,000 and achieved the best recognition accuracy

(99.10%) when compared to other established OCR methods such as the horizontal and

vertical centerline or baseline of characters. However, this was an improvement of only

0.07% on the previously most accurate method of a combination of multiple classifiers

with statistical features.

Roy et al. had already adopted and improved on this principle in 2017 when they

employed a layer-wise technique of DCNN in order to improve the accuracy in

identifying Bangla characters [19]. This technique DCNN incorporated with the layer-

wise training model, which is a multi-stage process that involves adding layers of

convolutional and pooling processes followed by fully connected layers which contain

multiple neurons, and applies the back-propagation algorithm to find the weights of

importance. This layer layer-wise-trained DCNN produced results that improved upon

standard DCNN nearly 10%.

In 2018 Jangid & Srivastava performed a similar study using Devanagari [20]. This layer-

wise-trained DCNN produced results that improved upon standard DCNN by up to 1.5%

across sample sizes of up to almost 57,000 characters.

However, as noted in 3.2.2, the additional resources required for the use of neural

networks in conjunction with OCR can be considerable. Yet, there seems to be scarcity

of research into the application of deep learning in OCR in regards to the performance

costs of doing so, and whether this is even feasible on a mobile platform integrated into

a mobile application that expects real-time results.

20

Yin et al. expanded on Jangid & Srivastava’s researched further in 2019 using deep

learning techniques to improve existing OCR approaches for recognising Chinese

uppercase character by considering network weight, and test time [21]. Generally, the

deeper the number of layers of the neural network and the more parameters, the more

accurate the conclusions are, but accurate results mean more computing resources are

consumed. In their study Yin et al. reduced overhead through the practice of ‘pruning’,

or the removal of parameters that do not contribute significantly to the output. This is

achieved by identifying the most redundant neurons using an Average Percentage of

Zeroes (ApoZ) algorithm and removing some of the unnecessary network neurons and

retaining the weight parameters which are important to the network and reducing the

parameters in order to reduce the computational complexity of the model. Using this

method, accuracy decreased by 1.26% when compared with a standard Convolutional

Neural Network (CNN) but achieved a network weight reduction of 96.5%.

Likewise, Valueva et al. researched two techniques in combination to reduce hardware

costs in the implementation of CNN architecture [22]. In their application of a CNN, the

neural network is divided into distinct hardware and software partitions to increase

performance and reduce the cost of implementation resources. They combined this with

novel residue number system in the hardware part of the convolutional layer of the CNN

to implement the convolutional layer of the neural network. A residue numeral system is

a numeral system representing integers by their values modulo several pairwise coprime

integers called the moduli. This ‘multi-modular arithmetic’ system is widely used for

computation with large integers, typically in linear algebra, because it provides faster

computation than with the usual numeral systems, even when the time for converting

between numeral systems is taken into account [23]. The implementation of these two

methods in combination showed a reduction in hardware costs of 7.86% to 37.78% and

reduced the average time of image recognition by 41.17%.

3.2 Three approaches to OCR

Of all the peer-reviewed articles found using the joint search term combining ‘OCR’ and

‘deep learning’, a large majority dealt with using OCR in conjunction with deep learning

in reading hand-written non-Latin script languages. In each of these cases the studies

follow the typical pattern of:

21

1. Identify the problem language.

2. Propose a deep learning-aided OCR technique for improving recognition

accuracy.

3. Conduct tests on an existing or generated database of words and characters.

4. Report on results.

These studies proved extremely useful in helping selection what type of standard deep

learning and custom deep learning platform to apply when conducting our own tests.

3.2.1 Classic computer vision techniques: Tesseract 3.05

Tesseract is an open source OCR released under the Apache License, originally

developed by Hewlett-Packard as proprietary software between 1985 and 1995. It was

released as open source in 2005 and development has been supported by Google since

2006 [24]. Before machine learning and deep learning became ubiquitous in OCR around

the 2010s, Tesseract was considered one of the most accurate open-source OCR engines

available at that time [25].

Text image processing in Tesseract 3.05 follows a traditional step-by-step pipeline, as per

Figure 8:

1. A connected component analysis in which outlines of the components are stored.

Outlines are gathered together by nesting into Blobs.

2. Blobs are organized into text lines, and the lines and regions are analysed for

fixed-pitch or proportional text.

3. Text lines are broken into words differently according to the kind of character

spacing:

a. Fixed-pitch text is chopped immediately by character cells.

b. Proportional text is broken into words using definite spaces and fuzzy

spaces.

c. Recognition proceeds as a two-pass process:

d. An attempt is made to recognise each word in turn. Each word that is

satisfactory is passed to an adaptive classifier as training data. The

adaptive classifier can then, more accurately, recognize text lower down

the page.

22

e. A second pass is run in which words that were not sufficiently recognised

are recognised again to compensate for the adaptive classifier still

adapting on its first pass.

2. The final phase resolves fuzzy spaces and checks alternative hypotheses for the

x-height to locate small-cap text. [8] [26]

Figure 8- An illustration of the Tesseract OCR architecture.

3.2.2 Standard deep learning: Tesseract 4.1.1

As of version 4 (released October 2018) Tesseract incorporated Long Short-Term

Memory (LSTM) within a Recurrent Neural Network (RNN) architecture (see Appendix

1: Neural network terminologies), using a text line recognizer in its new neural network

subsystem. In modern OCR, it is ubiquitous to use a CNN to recognise an image that

contains a single character, but in Tesseract 4 text that has arbitrary length and a sequence

of characters is solved using RNNs and LSTM. The Tesseract input image in LSTM is

processed in bound boxes line by line that inserts into the LSTM model and gives the

output [27].

According to Tesseract’s own documentation, the Tesseract 4 neural network subsystem

is heavily compute-intensive, using the order of ten times the CPU resources of the base

Tesseract unless adequate mitigation in the form parallel processing is not undertaken

[15].

3.2.3 Specialised deep learning: OpenCV’s EAST and Tesseract 4.1.1

OpenCV’s EAST text detector is a deep learning model based on a novel architecture and

training pattern. Its sole function is text detection in an image, not actual recognition or

reading of the text. EAST is used to detect text in an image and bind text in horizontal

and rotated bounding boxes which are divided into individual images (see Figure 9),

which are then fed into a text recognition method [28], in this case Tesseract 4.1.1.

23

Figure 9- An example of a prescription medicine label with bounding applied by OpenCV's EAST (above) and the

resulting separation of the image into bound boxes for text recognition (below).

EAST uses a single pipeline that directly predicts words or text lines of arbitrary

orientations and quadrilateral shapes in full images, eliminating unnecessary intermediate

steps, such as candidate aggregation and word partitioning, with a single neural network.

The text detection pipeline has two stages, as per Figure 10:

3. A Fully-Convolutional Network (FCN) (see Appendix 1: Neural network

terminologies) to directly produce word or text-line level prediction, which could

be rotated rectangles or quadrangles.

4. A Non-Maximum Suppression (NMS) merging state to yield the final output.

The neural network model is trained to directly predict the existence of text instances and

their geometries from full images. The model is an FCN adapted for text detection that

outputs dense per-pixel predictions of words or text lines: an image is fed into the FCN

and multiple channels of pixel-level text score map and geometry are generated. One of

the predicted channels is a score map whose pixel values are in the range of [0; 1]. The

remaining channels represent geometries that encloses the word from the view of each

pixel. The score stands for the confidence of the geometry shape predicted at the same

location. Thresholding is then applied to each predicted region, where the geometries

whose scores are over the predefined threshold is considered valid and saved for later

24

NMS. The output after NMS, a post-processing algorithm responsible for merging all

detections that belong to the same object [29], is considered the final output of the pipeline

[28].

Figure 10- The structure of the EAST text detection FCN.

EAST is considered to be wholly robust, capable of localizing text even when it is blurred,

reflective, or partially obscured. Regarding performance, since the EAST’s deep learning

model is end-to-end, it is possible to avoid computationally expensive sub-algorithms that

other text detectors typically apply, including candidate aggregation and word

partitioning.

4 Results & analysis

Table 1 is a general overview of the results from scanning the dataset of 100 images using

each of the three OCR methods on the Android platform. A more in-depth review is of

these is presented in this chapter. The results are broken down into categories of

accuracy, time and resource use.

Table 1- Overview of the results from testing 100 images using the three methods of OCR on the Android platform

 CCVT -

Tesseract 3.05

StanDL -

Tesseract 4.1.1

SpecDL - EAST +

Tesseract 4.1.1

Accuracy 50% 76% 74%

Total time for 100

images (m, s)

23m 44s 28m 16s 60m 29s

Average time per

label (seconds)

14.24 16.97 36.29

Average CPU

usage

12% 12% 20%

25

Native memory

heap avg. (MB)

150 93 515

Battery usage 1.82% 5.23% 8.25%

4.1 Accuracy

Table 2 provides a more in-depth overview of the accuracy results from the test of the

three methods. For a complete breakdown of the accuracy of all three methods, see

Appendices 3: Test results.

Table 2- A detailed presentation of the accuracy of each of the three method of OCR on the Android platform.

 CCVT -

Tesseract 3.05

StanDL -

Tesseract 4.1.1

SpecDL - EAST +

Tesseract 4.1.1

Complete match 50% 76% 74%

Near miss 19% 10% 15%

Table 2 shows that StanDL and SpecDL have the best accuracy of the three OCR

methods, but the CCVT has the best potential for improvement, with 19% of scan results

being only one character away from being a complete match. This does not count for

much, however, as Tesseract 3.05 is the only method not to use any form of deep learning

and therefore does not have the capability to be further trained without developer input

and further iterations. Tesseract 4.1.1 and EAST, on the other hand, with their deep

learning mechanisms, could be further trained and optimised by the user rather than by

the developer. With more training, the StanDL and SpecDL methods could potentially

achieve an accuracy rate approaching 86% and 89% respectively by correcting each ‘near

miss’.

Accuracy could potentially be improved across all methods with further pre-processing

of images before they are fed into the OCR methods, and by further testing with different

combinations of segmentation and OCR engine parameters.

4.2 Time

Table 3 provides a more in-depth overview of the time taken for each image to be

processed individually and as a whole dataset from the tests conducted. For a complete

breakdown of the time taken for each image to be processed by each all three methods,

see Appendices 3: Test results.

26

Table 3- A detailed explanation of the time taken for scanning of each image and the dataset of 100 images.

 CCVT -

Tesseract 3.05

StanDL -

Tesseract 4.1.1

SpecDL - EAST +

Tesseract 4.1.1

Total time for 100

images (m, s)

23m 44s 28m 16s 60m 29s

Time range

(seconds)

0.02 ≤ t ≤ 86.11 0.25 ≤ t ≤ 92.35 8.53 ≤ t ≤ 167.11

Average time per

label (seconds)

14.24 16.97 36.29

of images

scanned in ≤ 1s

1% 9% -

of images

scanned in ≤ 5s

21% 19% -

of images

scanned in ≤ 10s

51% 41% 11%

These results show that CCVTs and StanDL are certainly comparable in the fields of total

time taken to process 100 images, the time range for individual images, and the average

time taken to process an image. The standout, however, is StanDLs result in the category

of images being processed in less than one second: 9% when compared to just 1% for

CCVTs and zero for SpecDL. StandDL also shows promising results in the percentage

of images processed in less than five and ten seconds respectively (19% and 41%). This

demonstrates that for use in mobile scanner that aims to provide the user with near-

instantaneous results, StanDL appears to be the best suited.

When viewing the time taken for each image to be processed when compared to the size

of the image (see Figure 11, Figure 12 and Figure 13), there does not appear to be any

substantive correlation between file size and time when using either CCVTs or SpecDL.

However, there does appear to be some correlation when using only StanDL, especially

with larger file sizes. This could be explained by Tesseract 4.1.1’s use of LSTM, which

is a form of RNN (see Appendix 1: Neural network terminologies): the larger the image,

the more feedback in the RNN.

27

Figure 11- A graphical depiction of the time taken to scan 100 individual images depending on the size of the image

using Tesseract 3.05.

Figure 12- A graphical depiction of the time taken to scan 100 individual images depending on the size of the image

using Tesseract 4.1.1.

Figure 13- A graphical depiction of the time taken to scan 100 individual images depending on the size of the image

using EAST + Tesseract 4.1.1.

0

20

40

60

80

100

0

5

10

15

20

Ti
m

e
(s

ec
o

n
d

s)

Im
ag

e
si

ze
 (

M
B

)

Time take to process images

Time taken to process individual images according to image file size
using Tesseract 3.05

Image size Tesseract 3.05

0

20

40

60

80

100

0

5

10

15

20

Ti
m

e
(s

ec
o

n
d

s)

Im
ag

e
si

ve
 (

M
B

)

Time taken to process images

Time taken to process individual images according to image file size
using Tesseract 4.1.1

Image size Tesseract 4.1.1

0

50

100

150

200

0

5

10

15

20

Ti
m

e
(s

ec
o

n
d

s)

Im
ag

e
si

ze
 (

M
B

)

Time taken to process images

Time taken to process individual images according to image file
using EAST + Tesserac 4.1.1

Image size EAST + Tesseract 4.1.1

28

When examining the time taken to process individual images according to the

dimensional rather than file size, the does not appear to be any correlation between

dimensional size of an image and the time taken for the image to be processed using this

CCVT and StanDL, as per Figure 14 and Figure 15.

Figure 14- A graphical depiction of the time taken to scan 100 individual images depending on the dimensions of the

image using Tesseract 3.05& 4.1.1.

Conversely, there appears to be a strong correlation between dimensional size of an image

and the time taken for the image to be processed using SpecDL, as per Figure 15.

Figure 15- A graphical depiction of the time taken to scan 100 individual images depending on the dimensions of the

image using EAST + Tesseract 4.1.1.

The correlation between dimensional size of an image and the time taken for the image

to be processed using SpecDL can be explained with EAST’s use of bound boxes as a

0

20

40

60

80

100

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(s

ec
o

n
d

s)

D
im

en
si

o
n

 (
M

B
)

Image dimension

Time taken to process individual images according to dimension size
using Tesseract 3.05 & 4.1.1

Width Height Tesseract 3.05 Tesseract 4.1.1

0

50

100

150

200

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(s

ec
o

n
d

s)

D
im

en
si

o
n

 (
p

ix
el

s)

Time taken to process images

Time taken to process individual images according to dimension size
using EAST + Tesseract 4.1.1

Width Height EAST + Tesseract 4.1.1

29

function of text detection (see 3.2.3): the larger the dimension of an image, the more

likelihood there is for text to be detected. Demonstrating this further is evidence that the

more bound boxes generated by EAST, the longer an image takes to generate an output,

as shown by Figure 16. Overall, this would suggest that rather than the file size of the

image dictating the scanning time using SpecDL, it would depend on the number of words

in contained in the image.

Figure 16- A graphical depiction of the time taken to scan each individual images against the number of bound boxes

generated in processing that image using EAST.

4.3 Resource use

Table 4 provides a more in-depth overview of the performance results from the test of the

three methods. For a complete breakdown of the performance of all three methods, see

Appendices 3: Test results.

Table 4- A detailed explanation of the performance aspect of processing 100 prescription label images using the three

methods of OCR.

 CCVT -

Tesseract 3.05

StanDL -

Tesseract 4.1.1

SpecDL - EAST +

Tesseract 4.1.1

Average CPU

usage

12% 12% 20%

CPU usage range

(% of capacity)

10 ≤ c ≤ 14 10 ≤ c ≤ 14 10 ≤ c ≤ 85

Native heap

memory avg (MB)

78 93 515

0

50

100

150

200

0

100

200

300

400

500

600

Ti
m

e
(s

ec
o

n
d

s)

N
u

m
b

er
 o

f
b

o
u

n
d

 b
o

xe
s

Time taken to process images

Time taken to process individual images according to the number of
bound boxes generated by EAST

Number of bound boxes EAST

30

Native heap

memory range

(MB)

63 ≤ m ≤ 140 80 ≤ m ≤ 152 274 ≤ m ≤ 2050

Battery usage 1.82% 5.23% 8.25%

These results show that the performances of the methods for CCVTs and StanDL are

comparable, while SpecDL is more resource hungry by several orders of magnitude.

While slightly more resource intense than Tesserect 3.05, the multiple cores in the P30

appear to be able handle the extra processing that LSTM requires despite the developer’s

warnings [15]. Overall, this serves to suggests that CCTVs and StanDL are more suited

to a wider range of mobile devices, while all but the higher end mobile devices are

currently equipped to handle the resource costs of SpecDL.

As shown in Figure 17, Figure 18 and Figure 19, there appears only to be a slight

correlation between the file size of an image and the amount of native heap memory used

for all three methods of OCR. Though, it is apparent for all three methods of OCR is that

the pattern of native heap memory is consistent over the 100 images, albeit at slightly

different magnitudes for Tesseract 3.05 and 4.1.1, and at a substantially larger magnitude

for EAST + 4.1.1.

Figure 17- A graphical representation of native heap memory used to process individual images according to file size

using Tesseract 3.05 & 4.1.1

0

50

100

150

200

0

5

10

15

20

N
at

iv
e

h
ea

p
 m

em
o

ry
 (

M
B

)

Im
ag

e
si

ze
 (

M
B

)

Memory used to process images

Native heap memory used to process individual images according to
file size using Tesseract 3.05 & 4.1.1

Image size Tesseract 3.05 Tesseract 4.1.1

31

Figure 18- A graphical representation of native heap memory used to process individual images according to file size

using EAST + Tesseract 4.1.1

There is a far more pronounced association between native heap memory used and

dimension size in all three methods of OCR, as shown in Figure 19 and Figure 20. As

with comparing file size and memory cost, it is apparent for all three methods of OCR is

that the pattern of native heap memory use is consistent over the 100 images, albeit at

slightly different magnitudes for Tesseract 3.05 and 4.1.1, and at a substantially larger

magnitude for EAST + 4.1.1.

Figure 19- A graphical representation of native heap memory used to process individual images according to images

dimensions using Tesseract 3.05 & 4.1.1

0

500

1000

1500

2000

2500

0

5

10

15

20

N
at

iv
e

h
ea

p
 m

em
o

ry
 (

M
B

)

Im
ag

e
si

ze
 (

M
B

)

Memory used to process images

Native heap memory used to process individual images according to
file sizes using EAST + Tesseract 4.1.1

Image size EAST + Tesseract 4.1.1

0

20

40

60

80

100

120

140

160

0

500

1000

1500

2000

2500

3000

3500

N
at

iv
e

h
ea

p
 m

em
o

ry
 (

M
B

)

D
im

en
si

o
n

 (
p

ix
el

s)

Memory used to process images

Native heap memory used to process individual images according to
images dimensons using Tesseract 3.05 & 4.1.1

Width Height Tesseract 3.05 Tesseract 4.1.1

32

Figure 20- A graphical representation of native memory used to process individual images according to dimensions

using EAST + Tesseract 4.1.1.

Unlike the time taken to process each images see (Figure 16), there does not appear to be

any substantive association between the number of bound boxes generated by EAST in

the SpecDL method, as shown in Figure 21.

Figure 21- A graphical representation of native heap memory used to process individual images according to the

number of bound boxes generated by EAST.

Regarding power consumption, it is perhaps not surprising that SpecDL consumes the

most amount of power considering it takes approximately twice as long to scan the 100-

image dataset and demands more resources by several orders of magnitude. However,

while the CCTV and the StanDL methods are comparable for the range and average CPU

and native memory heap usage, StanDL uses nearly three times the amount of power than

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

3000

3500

N
at

iv
e

h
ea

p
 m

em
o

ry
 (

M
B

)

D
im

en
si

o
n

 (
p

ix
el

s)

Memory used to process images

Native heap memory used to process individual images according to
dimensions using EAST + Tesseract 4.1.1

Width Height EAST + Tesseract 4.1.1

0

500

1000

1500

2000

2500

0

100

200

300

400

500

600

N
at

iv
e

h
ea

p
 m

em
o

ry
 (

M
B

)

N
u

m
b

er
 o

f
b

o
u

n
d

 b
o

xe
s

Memory used to process images

Native heap memory used to process individual images according to
the number of bound boxes generated by EAST

Bound boxes EAST

33

the CCTV method. Assuming these results are accurate, this could be explained in

Tesseract’s documentation [15] as mentioned in 3.2.2: the Tesseract 4 neural network

subsystem is heavily compute-intensive, using the order of ten times the CPU resources

of the base Tesseract unless adequate mitigation in the form parallel processing is not

undertaken. The P30 does possess multiple cores (see Appendix 2: Case study details)

and appears to have had no issue mitigating the LSTM network used by Tesseract 4.1.1

but this parallel processing may have not been detected by Android Profiler in measuring

the CPU usage. This would also explain why Tesseract 3.05 and Tesseract 4.1.1 had

practically identical CPU usage results.

5 Discussion

The results garnered in Chapter 4 show that, perhaps unsurprisingly, the two methods of

OCR that utilise deep learning provide not only the greatest accuracy but also the potential

for improvement. Regarding speed and performance, the StanDL method was the

standout, providing by far the most near-instant results at a reasonable resource cost,

while SpecDL was both slow and by far the most resource hungry, making it unfeasible

for use in a scanner on a mobile device in a real-world application.

5.1 Label examples and analysis

When attempting to establish what determines how long an image takes to process,

Chapter 4 establishes that there appears to be no strong correlation between image file

dimension size and time for CCVTs and SpecDL, while the is a correlation using StanDL

with is particularly pronounced is larger image sizes. There is a strong association

between both file size and dimensional magnitude and time when using SpecDL due to

the nature of the text detection algorithm.

Table 5 provides a selection label images, their file size and dimension, and processing

times using the three method of OCR. The results of all processed images contained

therein were either accurate or deemed a ‘near miss’ under manual review.

34

Table 5- An example of selected label images, their file size and dimension and processing times using the three method

of OCR.

Image number File size

(MB)

Width

(px)

Height

(px)

Tesseract

3.05

(seconds)

Tesseract

4.1.1

(seconds)

EAST +

Tesseract

4.1.1

(seconds)

image_02300.jpg 9.94 749 529 86.11 92.35 38.78

image_02398.jpg 3.63 413 263 8.85 19.99 17.04

image_06616.jpg 0.18 615 282 2.52 0.61 12.02

Figure 22 shows image_2300.jpg at a substantially reduced size, it being one of the largest

file sizes in the dataset at 9.94MB. All three methods OCR took over 30 seconds to

process this one image, with the CCVT and StanDL methods taking over well over 60

seconds, as per Table 5. Although the roughly 50% of the image is negative space, the

text contained in the label presents both vertical and horizontal text in dense sections,

making it especially difficult for OCR methods use text segmentation, as does Tesseract

3.05 and 4.1.1, rather than text detection as does EAST. Additionally, numbers of dense

areas of smaller text have proven to be especially challenging to all methods of OCR,

resulting in significantly higher processing times in these cases. In this case, EAST

generated no less than 85 bound boxes for processing.

Figure 22- image_2300.jpg

35

Figure 23 shows image_02389.jpg at its actual size although it is still in the top 20% of

the file sizes in the dataset. All methods of OCR used processed the image in under 20

seconds. As the majority of the text contained in the image is horizontal and the text is

relative sparse when compared to Figure 22, processing the image takes less, but not

insubstantial, time for all three methods. The correlation between image size and

processing serves to explain why the StanDL method took the longest time of the three

methods to process this image in particular.

Figure 23- image_02398.jpg

Figure 24 is the smallest file in Table 5 and one of the smallest in the dataset, although it

is larger dimensionally than Figure 23. Despite this, two of the three methods of OCR

processed this image in less than five seconds. As with Figure 22, a large portion of this

image is negative space and presents text in dense blocks. Again, it is evident that the

dense area of small text proved to be an issue for EAST.

Figure 24- image_06616.jpg

36

5.2 Problem labels

Out of the dataset of 100 label images, 6% of these could not be processed accurately by

any of the three methods of OCR (see Appendices 3: Test results). When examining these

labels, there are two recurring factors that appear in all 6%:

• Low resolution, blocky font, as shown in Figure 25 and Figure 26, and

• Text on a coloured background, as shown in Figure 27.

Figure 25- image_01147.jpg

Figure 26- image_01156.jpg

Figure 27- image_07343.jpg

37

Should any prescription medication scanner that uses one of the three methods of OCR

utilised here become popular, medicine manufacturers may want to take this into

consideration in designing labels.

6 Conclusion

This study has explored the subjects of OCR and deep learning with the ultimate goal of

examining which particular method of OCR would be best suited for a mobile platform

in the specific context of a prescription medication label scanner. A review of peer-

reviewed literature found that there was a definite scarcity of research on the subject of

OCR that incorporates deep learning on specifically on mobile platforms, and practically

none were performance was the main consideration. A case study conducted using three

methods of OCR, two of which utilised deep learning to varying degrees, proved that one

of these methods was categorically more suited than other for the particular context in

which the study was conducted.

6.1 Research answers

The preceding research served to answer the question:

In the context of a mobile application using image recognition to scan prescription

medication labels, which approach to OCR provides the best performance?

The method of OCR that provides the best combination of accuracy, speed and resource

using has proven to be Standard Deep Learning, or Tesseract 4.1.1 in this particular case.

StanDL proved to be the most accurate method, had the highest number of images

processed in less than one second and demonstrated that it had very reasonable resource

costs – comparable to methods that did not utilise deep learning.

6.2 Ethics, sustainable development and societal aspects

As stated in 1.1, patients misidentifying medication is a real concern in, and the problem

is only growing in magnitude in this country as the population tends toward a higher

median age. It is important to be equipped with the right tools to achieve the highest

accuracy in the identification of prescription medication for the health and well-being of

the population.

38

If an application for scanning prescription medication was to be further developed,

consideration of how to securely store patient data will to be addressed. As people store

sensitive information on their mobile phones, any application using OCR implementation

needs to be secure because as it is accessing the phone’s camera and external storage.

Additionally, an official government/public health institution would be required to

acquire accurate data of each medication and any potentially conflicting medications.

Battery consumption on a single phone may be insignificant but when considering an

application with multiple millions of users, battery consumption and temperature increase

during app usage becomes an issue. Every step towards optimisation matters.

6.3 Future work

Future work on this study could resolve some of the following areas of improvements:

• Expanding testing hardware and software to include other models of mobile

phone and other mobile software platforms, especially iOS

• Expanding the dataset to include images of prescription medicine labels in real

world environments rather than digital scans

• Training neural networks for the specific purpose rather than using a pre-trained

network

• Testing various software models of each OCR method

• Experimenting with parallelisation of OCR methods over multiple cores to

achieve faster performance.

39

7 References

1

.

Socialstyrelsen. Statistik om läkemedel. [Online]. [cited 2020 Jan 22]. Available

from: https://www.socialstyrelsen.se/statistik-och-data/statistik/statistikamnen/

lakemedel/.

2. Institute of Medicine. Preventing Medication Errors. Washignton, DC: The

National Academies Press; 2007. Report No.: ISBN 978-0-309-10147-9.

3. Institute of Medicine. To Err Is Human: Building a Safer Health System.

Washington, DC: The National Academies Press; 2000. Report No.: ISBN 978-0-

309-06837-6.

4. The World Bank. Population ages 65 and above (% of total population) - Sweden,

United States, World. [Online]. [cited 2020 January 22]. Available from:

https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS?end=2018&locations

=SE-US-1W&start=1960&view=chart.

5. Zeng X, Cao K, Zhang M. MobileDeepPill. In Proceedings of the 15th Annual

International Conference on Mobile Systems, Applications, and Services -

MobiSys 17; 2017.

6. Delgado NL, Usuyama N, Hall AK, Hazen RJ, Ma M, Sahu S, et al. Fast and

accurate medication identification. npj Digital Medicine. 2019; 2(1).

7. P A. Optical Character Recognition. International Journal of Scientific Research

and Management. 2016.

8. Smith R. An Overview of the Tesseract OCR Engine. In Ninth International

Conference on Document Analysis and Recognition (ICDAR 2007); 2007. p. 629-

633.

9. Dhavale SV. In Advanced Image-Based Spam Detection and Filtering Techniques.

Hershey, PA: Information Science Reference; 2017. p. 91.

10. d'Albe E. On a Type-Reading Optophone. Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences. 1914 July; 90(619): p. 373–

375.

https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS?end=2018&locations=SE-US-1W&start=1960&view=chart
https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS?end=2018&locations=SE-US-1W&start=1960&view=chart

40

11. Vetenskapen och livet. 1922: p. 105.

12. Dechter R. Learning While Searching in Constraint-Satisfaction-Problems. In

Proceedings of the 5th National Conference on Artificial Intelligence; 1986;

Philadelphia, PA. p. 178-185.

13. Schmidhuber J. Deep Learning in Neural Networks: An Overview. Neural

Networks. 2015 January; 61: p. 85-117.

14. GlobalStats. statcounter. [Online]. [cited 2020 June]. Available from:

https://gs.statcounter.com/android-version-market-share/mobile-

tablet/worldwide.

15. tesseract-ocr. Overview of the new neural network system in Tesseract 4.00.

[Online].; 2019 [cited 2020 May 2]. Available from: https://tesseract-

ocr.github.io/tessdoc/NeuralNetsInTesseract4.00.

16. Mancas C, Gosselin T, Gosselin B. Vision Systems: Segmentation and Pattern

Recognition Obinata G, Dutta A, editors.: IntechOpen; 2007.

17. US National Library of Medicine. SPL RESOURCES: Download All Drug Labels.

[Online].; 2020 [cited 2020 May 1]. Available from:

https://dailymed.nlm.nih.gov/dailymed/spl-resources-all-drug-labels.cfm.

18. Benaddy M, El Meslouhi O, Es-saady Y, Kardouchi M. Handwritten Tifinagh

Characters Recognition Using Deep Convolutional Neural Networks. Sensing and

Imaging. 2019;(20).

19. Roy S, Das N, Kundu M, Nasipuri M. Handwritten isolated Bangla compound

character recognition: A new benchmark using a novel deep learning approach.

Pattern Recognition Letters. 2017 April; 90.

20. Jangid M SS. Handwritten Devanagari Character Recognition Using Layer-Wise

Training of Deep Convolutional Neural Networks and Adaptive Gradient

Methods. Journal of Imaging. 2018; 4(41).

https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://tesseract-ocr.github.io/tessdoc/NeuralNetsInTesseract4.00
https://tesseract-ocr.github.io/tessdoc/NeuralNetsInTesseract4.00
https://dailymed.nlm.nih.gov/dailymed/spl-resources-all-drug-labels.cfm

41

21. Yin Y, Zhang W, Hong S, Yang J, Xiong J, Gui G. Deep Learning-Aided OCR

Techniques for Chinese Uppercase Characters in the Application of Internet of

Things. IEEE Access. 2019; 7: p. 47043-47049.

22. Valuevaa MV, Nagornovb NN, Lyakhova PA, Valueva MV, Chervyakova NI.

Application of the residue number system to reduce hardware costs of the

convolutional neural network implementation. Mathematics and Computers in

Simulation. 2020 November; 177: p. 232–243.

23. Parhami B. Computer Arithmetic: Algorithms and Hardware Design. 2nd ed. New

York: Oxford University Press; 2010.

24. Vincent L. Google code. [Online].; 2006 [cited 2020 May 15]. Available from:

https://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html.

25. Willis N. Linux.com. [Online].; 2006 [cited 2020 May 15]. Available from:

https://www.linux.com/news/googles-tesseract-ocr-engine-quantum-leap-

forward/.

26. Boiangiu CA, Ioanitescu R, Dragomir RC. Voting-Based OCR System. Journal of

Information Systems & Operations Management. 2016; 10.

27. tesseract-ocr. Tesseract OCR. [Online].; 2020 [cited 2020 May 2]. Available from:

https://github.com/tesseract-ocr/tesseract.

28. Zhou X, Yao C, Wen H, Wang Y, Zhou S, He W, et al. EAST: An Efficient and

Accurate Scene Text Detector. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR); 2017; Honolulu. p. 2642-2651.

29. Hosang J, Benenson R, Schiele B. Learning Non-Maximum Suppression. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR); 2017. p. 4507-4515.

30. Kumar Singh M, Baluja GS, Prasad Sahu D. Understanding the Convolutional

Neural Network & its Research Aspects in Deep Learning. International Journal

for Research in Applied Science & Engineering Technology (IJRASET). 2017

June.

https://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html
https://www.linux.com/news/googles-tesseract-ocr-engine-quantum-leap-forward/
https://www.linux.com/news/googles-tesseract-ocr-engine-quantum-leap-forward/
https://github.com/tesseract-ocr/tesseract

42

31. Zhang Y, Itoh K, Tanida J, Ichioka Y. Parallel distributed processing model with

local space-invariant interconnections and its optical architecture. Applied Optics.

1990: p. 4790-4797.

32. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic

segmentation. In Proceedings of the IEEE conference on computer vision and

pattern recognition; 2015. p. 3431–3440.

33. Kulkarni TD, Whitney WF, Kohli P, Tenenbaum JB. Deep Convolutional Inverse

Graphics Network. In Advances in Neural Information Processing Systems 28;

2015.

34. Di Pietro R, Hager GD. Handbook of Medical Image Computing and Computer

Assisted Intervention. In SK Z, D R, G F, editors. Handbook of Medical Image

Computing and Computer Assisted Intervention. Baltimore: Academic Presss;

2019. p. 503-519.

35. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation.

1997 November; 9(8).

43

8 Appendices

8.1 Appendix 1: Neural network terminologies

8.1.1 Feedforward neural networks

Feedforward neural networks are named after the way they channel information through

a series of mathematical operations performed at the nodes of the network. Input

examples are fed into the network and transformed into an output. Under supervised

learning the output would be a label, or a name applied to the input and raw data is mapped

to categories, recognising patterns that may signal. In this network, the information

moves in only one direction, forward, from the input nodes, through the hidden nodes (if

any) and to the output nodes. As information only moves in one direction, there are no

cycles or loops in the network (see Figure 2) [13].

8.1.2 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are a kind of feedforward artificial neural

network that can take in an input image, assign importance (learnable weights and biases)

to various aspects/objects in the image and be able to differentiate one from the other.

The pre-processing required is much lower as compared to other classification

algorithms; previous methods’ filters are human-engineered, whereas with enough

training, CNNs have the ability to learn these filters/characteristics. Convolutional

networks are neural networks that use convolution in place of general matrix

multiplication in at least one of their layers [30].

While there are many applications for traditional neural network architecture, there are

several limitations, especially when it comes to image processing. Traditional neural

network architecture, or Multi-Layer Perceptron (MLP) use one perceptron, or an

algorithm for supervised learning of binary classifiers for each input. The amount of

weights in an MLP rapidly becomes unmanageable for large images. Additionally, MLPs

are usually fully connected, with each neuron in one layer is connected to all neurons in

the next layer, which often causes overfitting of data. Another common problem is that

MLPs react differently to an input and its shifted version in that they are not translation

invariant [31].

44

In contrast, CNNs take advantage of the hierarchical pattern in data and assemble more

complex patterns using smaller and simpler patterns. Therefore, on the scale of

connectedness and complexity, CNNs are on the lower extreme, using relatively little pre-

processing compared to other image classification algorithms. This means that the

network learns the filters that in traditional algorithms were hand-engineered. This

independence from prior knowledge and human effort in feature design is a major

advantage.

Figure 28- Comparison of architecture for MLP and CNN.

The structural design of CNN is analogous to that of the connectivity pattern of neurons

in the human brain and was inspired by the arrangement of the visual cortex.

A CNN usually consists of the following components:

• Input layer: a single raw image is given as an input. For a Red-Green-Blue (RGB)

image its dimension will be AxBx3, where 3 represents the three colours.

• A convolution layer: a convolution layer is a matrix of dimension smaller than the

input matrix. It performs a convolution operation with a small part of the input

matrix having same dimension. The sum of the products of the corresponding

elements is the output of this layer.

• Rectified Linear Unit (ReLU): ReLU is mathematically expressed as max(0,x),

where any number below 0 is converted to 0 while any positive number is allowed

to pass as it is.

• Maxpool: this passes the maximum value from amongst a small collection of

elements of the incoming matrix to the output. Usually it is a square matrix.

• Fully connected layer: the final output layer is a normal fully-connected neural

network layer, which gives the output. [30].

45

Figure 29- An illustration of a typical CNN.

8.1.3 Fully-Convolutional Network (FCN)

A Fully-Convolutional Network (FCN) uses a CNN to transform image pixels to pixel

categories. Unlike CNNs, all the learnable layers in an FCN are convolutional so it does

not have any fully-connected layer. An FCN transforms the height and width of the

intermediate layer feature map back to the size of input image through the transposed

convolution layer, so that the predictions have a one-to-one correspondence with input

image in spatial dimension (height and width). Given a position on the spatial dimension,

the output of the channel dimension will be a category prediction of the pixel

corresponding to the location [32].

The main advantages of an FCN over a CNN include:

• Input image size: In a CNN, the fully-connected layer expects inputs of a certain

size. Without this connected layer in the network, images of virtually any size

can be processed.

• Spatial information: As all output neurons are connected to all input neurons in

the fully-connected layer in a CNN, this can cause loss of spatial information,

making segmentation impossible. [33]

46

Figure 30- An illustration of a traditional FCN.

8.1.4 Recurrent Neural Network (RNN)

Recurrent neural networks (RNN) are another type artificial neural network derived from

feedforward neural networks, but unlike feedforward neural networks, can process input

not just the current input example received, but also what has been perceived previously.

The decision a RNN at time step t-1 affects the decision it will reach one moment later at

time step t, meaning RNNs have two sources of input: the present and the recent past,

which combine to determine how they respond to new data. Connections between nodes

form a directed graph along a temporal sequence, allowing it to exhibit temporal dynamic

behaviour.

Figure 31- An illustration a simple RNN.

RNNs can use their internal state, or memory, to process variable length sequences of

inputs. That sequential information is preserved in the recurrent network’s hidden state,

which manages to span many time steps as it cascades forward to affect the processing of

each new example. It is finding correlations between events separated by many moments

because an event downstream in time depends upon, and is a function of, one or more

events that came before. In this way, RNNs share weights over time [34].

47

8.1.5 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are not so much a different variant of RNN

architecture, but rather introduces changes to how outputs and hidden state using inputs

are computed. Although traditional RNNs can keep track of arbitrary long-term

dependencies in the input sequences, problems can arise when training a RNN using back-

propagation, where the gradients which are back-propagated can tend towards zero, or

‘vanish’, or can tend to infinity, or ‘explode’. This is due to the computations involved

in the process, which use finite-precision numbers. RNNs using LSTM units partially

solve the vanishing gradient problem as they are capable of learning long-term

dependencies.

There are several architectures of LSTM units, and common architecture is composed of

a cell (the memory part of the LSTM unit) and three ‘regulators’ or ‘gates’, of the flow

of information inside the LSTM unit: an input gate, an output gate and a forget gate.

Figure 32- A schematic of a LSTM unit as used in the hidden layers of an RNN.

LSTM networks are well-suited to classifying, processing and making predictions based

on time series data, since there can be lags of unknown duration between important events

in a time series [35].

8.2 Appendix 2: Case study details

8.2.1 Mobile phone hardware specifications:

Table 6- Hardware specifications for the Huawei P30 mobile phone

CPU Huawei Kirin 980 (8 core):

2x Cortex-A76 @ 2.6GHz

48

2x Cortex-A76 @ 1.92GHz

4x Cortex-A55 @ 1.8GHz

(4MB shared L3 cache)

RAM 6.0 GB, LPPD4X @ 2133 MHz

Screen resolution 2330x1080

Battey 3650mAh

8.2.2 Code repositories

100 image dataset: https://github.com/jbisiach/ImageDataset100.git

Java image filter: https://github.com/matzab/DataFilter_

Android OCR test application: https://github.com/matzab/OCRTest

8.2.3 Pre-testing results

Table 7- Tests conducted using Tesserect 3.05 with different sized image sets.

 10 images 100 images

Total time

(seconds)

99.26 1424.41

Accuracy 60% 66%

Average CPU

usage

12% 12%

Memory usage

range (MB)

120 ≤ m ≤ 140 120 ≤ m ≤ 250

Power

consumption

0.9% 12.6%

8.2.4 Tessreact & EAST libraries

Tesseract 3.05: https://github.com/adaptech-cz/Tesseract4Android

Tesseract 4.1.1: https://sourceforge.net/projects/opencvlibrary/files/4.1.1/

EAST: https://github.com/opencv

8.2.5 Tesseract options

Tesseract 3.05 engine options:

1. Tesseract engine only

https://github.com/jbisiach/ImageDataset100.git
https://github.com/matzab/DataFilter_
https://github.com/matzab/OCRTest
https://github.com/adaptech-cz/Tesseract4Android
https://sourceforge.net/projects/opencvlibrary/files/4.1.1/
https://github.com/opencv

49

2. Cube engine only

3. Tesseract and Cube combined

4. Default engine only

Tesseract 4.1.1 engine options:

1. Tesseract engine only

2. LSTM only

3. Tesseract and LSTM combined

4. Default OCR engine mode.

Tesseract orientation and segmentation options:

1. Orientation and script detection only

2. Automatic page segmentation with OSD

3. Fully automatic page segmentation, but no OSD, or OCR

4. Fully automatic page segmentation, but no OSD

5. Assume a single column of text of variable sizes

6. Assume a single uniform block of vertically aligned text

7. Assume a single uniform block of text (default)

8. Treat the image as a single text line

9. Treat the image as a single word

10. Treat the image as a single word in a circle

11. Treat the image as a single character

12. Find as much text as possible in no particular order

13. Sparse text with OSD

14. Treat the image as a single text line, bypassing ‘hacks’ that are Tesseract-specific.

Tesseract dictionary options:

1. Whitelist of characters to recognize

2. Blacklist of characters to not recognize

3. Save blob choices allowing acquisition of alternative results

4. String value used to assign a boolean variable to true

5. String value used to assign a boolean variable to false

50

8.3 Appendices 3: Test results

8.3.1 Test results

Raw test results repository: https://github.com/jbisiach/Test-Results.git

8.3.2 Accuracy

Table 8- Comprehensive test results denoting which images were correctly or almost correctly identified using each

method of OCR

⚫ denotes exact match

 denotes near miss

File Name CCVT -

Tesseract 3.05

StanDL -

Tesseract 4.1.1

SpecDL - EAST

+ Tesseract 4.1.1

image_00000.jpg

⚫ ⚫

image_00079.jpg

⚫ 

image_00258.jpg ⚫ ⚫ ⚫

image_00377.jpg

 

image_00414.jpg

⚫ ⚫

image_00478.jpg



image_00515.jpg ⚫ ⚫ ⚫

image_00689.jpg

⚫ ⚫

image_00698.jpg ⚫ ⚫ 

image_00771.jpg



image_01147.jpg

image_01156.jpg

image_01294.jpg

 

image_01384.jpg

 

image_01478.jpg

⚫ 

image_01569.jpg  ⚫ ⚫

image_01660.jpg

⚫ 

image_01751.jpg ⚫ ⚫ ⚫

image_01842.jpg

image_01936.jpg ⚫ ⚫ 

image_02027.jpg

image_02118.jpg

⚫ ⚫

image_02209.jpg

⚫ ⚫

image_02300.jpg ⚫ ⚫ ⚫

image_02398.jpg  ⚫ ⚫

https://github.com/jbisiach/Test-Results.git

51

image_02489.jpg ⚫ ⚫ ⚫

image_02670.jpg ⚫ ⚫ ⚫

image_02760.jpg

 

image_02851.jpg  ⚫ ⚫

image_02941.jpg

image_03032.jpg  ⚫ ⚫

image_03125.jpg

⚫ ⚫

image_03216.jpg

 

image_03310.jpg ⚫ ⚫ ⚫

image_03401.jpg  ⚫ ⚫

image_03495.jpg ⚫ ⚫ ⚫

image_03588.jpg 

⚫

image_03678.jpg ⚫ ⚫ ⚫

image_03864.jpg ⚫ ⚫ ⚫

image_03957.jpg ⚫ ⚫ ⚫

image_04048.jpg ⚫ ⚫ ⚫

image_04231.jpg ⚫ ⚫ 

image_04322.jpg ⚫ ⚫ ⚫

image_04414.jpg ⚫ ⚫ ⚫

image_04504.jpg ⚫

⚫

image_04596.jpg ⚫ ⚫ ⚫

image_04689.jpg  ⚫ ⚫

image_04873.jpg ⚫  ⚫

image_04967.jpg

⚫

image_05058.jpg

⚫ ⚫

image_05240.jpg   ⚫

image_05332.jpg

⚫ ⚫

image_05423.jpg ⚫ ⚫ ⚫

image_05513.jpg ⚫ ⚫ ⚫

image_05605.jpg  ⚫ ⚫

image_05698.jpg ⚫ ⚫ ⚫

image_05789.jpg 

⚫

image_05879.jpg ⚫ ⚫ ⚫

image_05975.jpg ⚫ ⚫ ⚫

image_06064.jpg ⚫ ⚫ ⚫

image_06157.jpg ⚫ ⚫ ⚫

image_06248.jpg

⚫ ⚫

52

image_06341.jpg ⚫ ⚫ ⚫

image_06433.jpg ⚫ ⚫ ⚫

image_06525.jpg ⚫ ⚫ ⚫

image_06616.jpg ⚫ ⚫ ⚫

image_06708.jpg ⚫ ⚫ ⚫

image_06799.jpg ⚫

image_07070.jpg  ⚫ ⚫

image_07161.jpg

⚫

image_07251.jpg  ⚫ ⚫

image_07343.jpg

image_07435.jpg  ⚫ ⚫

image_07528.jpg ⚫ ⚫ ⚫

image_07618.jpg ⚫ ⚫ ⚫

image_07807.jpg ⚫ ⚫ ⚫

image_10087.jpg

 ⚫

image_10180.jpg  ⚫ ⚫

image_10273.jpg

⚫ ⚫

image_10364.jpg ⚫ ⚫ ⚫

image_10458.jpg  ⚫ 

image_10551.jpg 

image_10646.jpg  ⚫ ⚫

image_10740.jpg ⚫

image_10831.jpg ⚫ ⚫ 

image_10922.jpg ⚫ ⚫ ⚫

image_11013.jpg ⚫ ⚫ ⚫

image_11104.jpg ⚫ ⚫ ⚫

image_11196.jpg ⚫ ⚫ ⚫

image_11288.jpg ⚫ ⚫ ⚫

image_11379.jpg ⚫ ⚫ ⚫

image_11650.jpg  ⚫ ⚫

image_11740.jpg ⚫ ⚫ ⚫

image_11830.jpg ⚫ ⚫ ⚫

image_11938.jpg

⚫ ⚫

image_12027.jpg ⚫ ⚫ ⚫

image_12127.jpg ⚫ ⚫ ⚫

image_12220.jpg  ⚫ ⚫

image_12310.jpg

⚫ 

53

image_12400.jpg ⚫ ⚫ 

8.3.3 Time

Table 9- The time taken in seconds for each image to be processed using each of the three methods of OCR.

File Name CCVT -

Tesseract 3.05

StanDL -

Tesseract 4.1.1

SpecDL - EAST

+ Tesseract 4.1.1

image_00000.jpg 17.06 6.65 82.98

image_00079.jpg 26.66 31.83 9.26

image_00258.jpg 8.44 10.20 18.31

image_00377.jpg 3.21 8.14 9.71

image_00414.jpg 5.72 8.80 16.37

image_00478.jpg 15.63 7.76 8.63

image_00515.jpg 11.76 36.43 34.17

image_00689.jpg 8.76 16.66 87.76

image_00698.jpg 36.43 26.13 74.33

image_00771.jpg 11.93 19.85 10.13

image_01147.jpg 11.30 26.54 8.53

image_01156.jpg 6.23 24.51 10.63

image_01294.jpg 16.47 12.18 9.00

image_01384.jpg 5.60 20.60 9.46

image_01478.jpg 31.54 18.53 11.58

image_01569.jpg 66.62 83.22 37.1

image_01660.jpg 2.30 0.84 8.91

image_01751.jpg 6.50 2.37 41.26

image_01842.jpg 20.58 14.21 10.31

image_01936.jpg 8.95 7.61 23.42

image_02027.jpg 6.47 26.84 11.28

image_02118.jpg 30.14 34.35 16.25

image_02209.jpg 1.64 6.44 9.93

image_02300.jpg 86.11 92.35 38.78

image_02398.jpg 8.85 19.99 17.04

image_02489.jpg 23.18 17.74 35.69

image_02670.jpg 10.32 32.23 72.09

image_02760.jpg 5.31 0.65 16.61

image_02851.jpg 2.29 0.74 60.12

image_02941.jpg 3.25 2.07 10.08

image_03032.jpg 18.84 4.18 26.55

image_03125.jpg 4.92 0.85 37.26

54

image_03216.jpg 9.34 4.36 27.31

image_03310.jpg 6.60 8.20 19.77

image_03401.jpg 5.16 6.62 16.94

image_03495.jpg 5.05 8.84 17.61

image_03588.jpg 12.39 11.95 14.06

image_03678.jpg 3.76 8.70 52.42

image_03864.jpg 25.62 23.82 124.46

image_03957.jpg 6.58 6.90 21.01

image_04048.jpg 25.22 21.05 15.44

image_04231.jpg 7.39 3.72 79.55

image_04322.jpg 16.17 32.41 33.29

image_04414.jpg 6.24 8.94 34.00

image_04504.jpg 11.00 27.54 72.69

image_04596.jpg 3.87 10.90 32.2

image_04689.jpg 15.84 12.90 16.13

image_04873.jpg 17.51 19.88 21.15

image_04967.jpg 11.32 14.17 13.45

image_05058.jpg 11.63 12.52 14.56

image_05240.jpg 8.26 7.31 28.35

image_05332.jpg 11.47 13.88 33.04

image_05423.jpg 2.11 8.65 37.26

image_05513.jpg 4.53 20.86 32.34

image_05605.jpg 3.81 0.77 14.4

image_05698.jpg 11.20 41.85 80.19

image_05789.jpg 2.10 7.27 26.08

image_05879.jpg 7.67 17.91 19.06

image_05975.jpg 10.54 1.96 44.65

image_06064.jpg 40.28 40.83 33.77

image_06157.jpg 32.29 22.65 27.49

image_06248.jpg 27.61 27.22 31.86

image_06341.jpg 79.39 45.56 17.31

image_06433.jpg 25.11 30.59 87.93

image_06525.jpg 6.90 7.16 15.79

image_06616.jpg 2.52 0.61 12.02

image_06708.jpg 7.78 24.33 30.10

image_06799.jpg 5.11 4.54 30.94

image_07070.jpg 7.13 12.98 35.24

55

image_07161.jpg 4.13 3.46 9.97

image_07251.jpg 26.49 33.88 9.66

image_07343.jpg 30.79 26.09 10.42

image_07435.jpg 24.53 18.79 37.85

image_07528.jpg 10.40 19.30 15.15

image_07618.jpg 6.00 13.42 67.31

image_07807.jpg 23.78 30.82 135.07

image_10087.jpg 21.07 17.16 35.03

image_10180.jpg 26.29 19.65 23.04

image_10273.jpg 5.53 19.76 11.16

image_10364.jpg 9.08 18.38 16.15

image_10458.jpg 6.11 16.26 12.66

image_10551.jpg 23.09 27.97 93.36

image_10646.jpg 3.76 9.50 34.08

image_10740.jpg 9.21 35.91 50.26

image_10831.jpg 5.64 4.86 34.48

image_10922.jpg 4.72 6.33 66.4

image_11013.jpg 26.86 15.80 47.54

image_11104.jpg 8.35 18.15 27.63

image_11196.jpg 16.62 7.86 32.34

image_11288.jpg 12.78 6.95 53.74

image_11379.jpg 27.96 30.72 167.11

image_11650.jpg 1.69 1.54 25.62

image_11740.jpg 4.59 5.26 16.58

image_11830.jpg 0.02 0.25 52.46

image_11938.jpg 17.59 16.40 104.81

image_12027.jpg 12.16 8.63 12.29

image_12127.jpg 15.13 22.95 159.56

image_12220.jpg 2.26 0.74 50.1

image_12310.jpg 14.65 37.11 31.85

image_12400.jpg 3.56 0.82 47.99

8.3.4 Native heap memory

File Name CCVT -

Tesseract 3.05

StanDL -

Tesseract 4.1.1

SpecDL - EAST

+ Tesseract 4.1.1

image_00000.jpg 97 112 1023

image_00079.jpg 73 88 1141

image_00258.jpg 77 91 566

56

image_00377.jpg 74 90 275

image_00414.jpg 77 90 296

image_00478.jpg 75 90 499

image_00515.jpg 86 100 491

image_00689.jpg 100 112 978

image_00698.jpg 88 99 531

image_00771.jpg 75 91 274

image_01147.jpg 75 91 480

image_01156.jpg 77 91 487

image_01294.jpg 77 92 491

image_01384.jpg 77 92 485

image_01478.jpg 78 92 492

image_01569.jpg 86 97 373

image_01660.jpg 79 94 567

image_01751.jpg 87 100 583

image_01842.jpg 81 96 579

image_01936.jpg 85 99 550

image_02027.jpg 83 97 545

image_02118.jpg 85 99 514

image_02209.jpg 84 98 511

image_02300.jpg 93 104 376

image_02398.jpg 66 80 287

image_02489.jpg 73 85 368

image_02670.jpg 84 94 528

image_02760.jpg 66 80 292

image_02851.jpg 80 92 530

image_02941.jpg 64 83 714

image_03032.jpg 74 86 544

image_03125.jpg 80 92 407

image_03216.jpg 66 89 315

image_03310.jpg 66 89 307

image_03401.jpg 65 89 290

image_03495.jpg 68 90 308

image_03588.jpg 66 92 317

image_03678.jpg 79 92 519

image_03864.jpg 124 141 1922

image_03957.jpg 66 82 306

57

image_04048.jpg 69 84 359

image_04231.jpg 99 104 634

image_04322.jpg 65 81 336

image_04414.jpg 71 82 332

image_04504.jpg 86 91 504

image_04596.jpg 72 88 383

image_04689.jpg 65 86 297

image_04873.jpg 73 93 427

image_04967.jpg 67 88 282

image_05058.jpg 71 92 342

image_05240.jpg 80 94 375

image_05332.jpg 70 81 331

image_05423.jpg 69 84 384

image_05513.jpg 68 86 384

image_05605.jpg 70 86 342

image_05698.jpg 96 108 803

image_05789.jpg 68 81 312

image_05879.jpg 70 84 341

image_05975.jpg 80 94 506

image_06064.jpg 69 83 359

image_06157.jpg 66 85 358

image_06248.jpg 74 87 377

image_06341.jpg 70 86 331

image_06433.jpg 99 113 885

image_06525.jpg 65 80 295

image_06616.jpg 66 82 313

image_06708.jpg 71 83 331

image_06799.jpg 71 86 358

image_07070.jpg 76 88 376

image_07161.jpg 63 85 577

image_07251.jpg 69 86 508

image_07343.jpg 67 85 711

image_07435.jpg 77 89 569

image_07528.jpg 66 88 581

image_07618.jpg 85 98 652

image_07807.jpg 140 152 2050

image_10087.jpg 74 85 386

58

image_10180.jpg 70 84 341

image_10273.jpg 68 83 312

image_10364.jpg 70 85 331

image_10458.jpg 71 84 299

image_10551.jpg 118 137 1728

image_10646.jpg 70 85 414

image_10740.jpg 78 89 426

image_10831.jpg 74 88 382

image_10922.jpg 79 91 424

image_11013.jpg 83 97 523

image_11104.jpg 74 92 344

image_11196.jpg 80 95 406

image_11288.jpg 88 101 745

image_11379.jpg 121 124 1013

image_11650.jpg 67 81 342

image_11740.jpg 66 81 343

image_11830.jpg 79 92 560

image_11938.jpg 105 115 1063

image_12027.jpg 76 93 345

image_12127.jpg 126 129 1012

image_12220.jpg 80 93 597

image_12310.jpg 72 85 344

image_12400.jpg 77 91 445

8.3.5 Image size & number of bound boxes created by EAST

Table 10- The file size of each image and the number of bound boxes created by EAST for each image.

File Name Image size

(MB)

Width (px) Height (px) # of bound

boxes created

by EAST

image_00000.jpg 8.33 2550 857 130

image_00079.jpg 1.51 350 187 16

image_00258.jpg 1.01 879 322 37

image_00377.jpg 0.59 350 187 15

image_00414.jpg 0.93 465 315 59

image_00478.jpg 0.48 300 157 14

image_00515.jpg 14.27 1392 513 52

image_00689.jpg 1.91 2550 881 135

59

image_00698.jpg 2.02 1488 604 175

image_00771.jpg 1.43 350 185 18

image_01147.jpg 1.70 291 156 11

image_01156.jpg 2.99 450 162 10

image_01294.jpg 0.77 350 183 13

image_01384.jpg 1.46 350 189 12

image_01478.jpg 551 450 166 13

image_01569.jpg 9.94 1004 372 90

image_01660.jpg 0.17 350 155 10

image_01751.jpg 0.27 1110 382 92

image_01842.jpg 0.71 450 165 10

image_01936.jpg 0.72 552 470 39

image_02027.jpg 3.12 450 164 14

image_02118.jpg 9.60 470 300 46

image_02209.jpg 0.75 450 165 10

image_02300.jpg 9.94 749 529 85

image_02398.jpg 3.63 413 263 38

image_02489.jpg 0.73 749 529 82

image_02670.jpg 1.98 1414 576 164

image_02760.jpg 0.24 499 245 30

image_02851.jpg 0.25 1432 604 136

image_02941.jpg 0.28 450 163 11

image_03032.jpg 1.42 917 228 77

image_03125.jpg 0.21 1157 471 82

image_03216.jpg 1.61 642 293 65

image_03310.jpg 0.28 563 305 49

image_03401.jpg 0.99 413 263 38

image_03495.jpg 0.28 563 305 42

image_03588.jpg 0.53 668 292 25

image_03678.jpg 0.28 1076 832 98

image_03864.jpg 1.51 1700 2338 163

image_03957.jpg 0.41 441 311 31

image_04048.jpg 1.51 918 340 39

image_04231.jpg 1.08 1352 972 246

image_04322.jpg 3.11 768 291 109

image_04414.jpg 0.47 768 294 118

image_04504.jpg 3.30 738 1033 226

60

image_04596.jpg 0.28 910 384 107

image_04689.jpg 0.78 413 263 41

image_04873.jpg 2.08 1139 477 78

image_04967.jpg 0.72 402 129 12

image_05058.jpg 0.66 957 276 25

image_05240.jpg 0.41 700 536 62

image_05332.jpg 0.66 768 292 123

image_05423.jpg 0.74 838 460 119

image_05513.jpg 3.42 1120 343 102

image_05605.jpg 0.25 383 703 46

image_05698.jpg 15.16 973 1736 142

image_05789.jpg 0.52 625 233 86

image_05879.jpg 1.19 910 308 39

image_05975.jpg 0.56 1359 582 126

image_06064.jpg 5.01 931 361 92

image_06157.jpg 0.85 1080 319 82

image_06248.jpg 0.86 998 414 81

image_06341.jpg 2.90 750 304 43

image_06433.jpg 1.33 1463 1336 190

image_06525.jpg 0.41 600 172 36

image_06616.jpg 0.18 615 282 15

image_06708.jpg 2.07 832 262 102

image_06799.jpg 0.20 800 403 86

image_07070.jpg 1.01 924 422 97

image_07161.jpg 2.72 179 240 12

image_07251.jpg 1.43 417 281 12

image_07343.jpg 0.86 179 240 12

image_07435.jpg 1.47 340 867 124

image_07528.jpg 1.47 667 174 41

image_07618.jpg 1.03 1370 898 193

image_07807.jpg 6.44 3024 1392 194

image_10087.jpg 0.56 916 431 97

image_10180.jpg 1.07 934 285 79

image_10273.jpg 3.02 464 336 19

image_10364.jpg 1.28 917 267 39

image_10458.jpg 1.31 575 218 21

image_10551.jpg 1.58 2200 1700 114

61

image_10646.jpg 0.87 1153 434 81

image_10740.jpg 7.46 626 846 196

image_10831.jpg 0.39 993 379 105

image_10922.jpg 0.66 1030 435 125

image_11013.jpg 0.83 1064 737 125

image_11104.jpg 1.23 323 622 85

image_11196.jpg 8.57 973 394 92

image_11288.jpg 3.43 723 1996 113

image_11379.jpg 1.49 1872 1392 557

image_11650.jpg 0.16 560 336 85

image_11740.jpg 0.45 763 246 54

image_11830.jpg 0.16 1337 611 124

image_11938.jpg 1.12 2032 1238 209

image_12027.jpg 0.44 745 266 15

image_12127.jpg 4.69 1872 1392 533

image_12220.jpg 0.25 1416 672 120

image_12310.jpg 16.06 723 268 103

image_12400.jpg 0.25 1192 436 158

