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Abstract 
Deep learning has become ubiquitous as part of Optical Character Recognition (OCR), but there are 
few examples of research into whether the two technologies are feasible for deployment on a mobile 
platform.  This study examines which particular method of OCR would be best suited for a mobile 
platform in the specific context of a prescription medication label scanner.  A case study using three 
different methods of OCR – classic computer vision techniques, standard deep learning and specialised 
deep learning – tested against 100 prescription medicine label images shows that the method that 
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learning, or Tesseract 4.1.1 in this particular case.  Tesseract 4.1.1 tested with 76% accuracy with a 
further 10% of results being one character away from being accurate.  Additionally, 9% of images were 
processed in less than one second and 41% were processed in less than 10 seconds.  Tesseract 4.1.1 
also had very reasonable resource costs, comparable to methods that did not utilise deep learning.    
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Abbreviations & Acronyms 

Abbreviation 

or acronym 

Meaning First used 

OCR Optical Character Recognition 1 

NLM National Library of Medicine 1.1 

CCVTs Classic Computer Vision Techniques 1.2.1 

StanDL Standard Deep Learning 1.2.1 

SpecDL Specialised Deep Leaning 1.2.1 

EAST Efficient Accurate Scene Text detector 1.2.1 

CPU Central Processing Unit 2.2.2 

CSV Comma Separated Values file 2.2.3 

OSD Orientation and script detection 2.2.4 

LSTM Long Short-Term Memory 2.2.4 

DCNN Deep Convolutional Neural Networks 3.1 

CNN Convolutional Neural Networks 3.1 

RNN Recurrent Neural networks 3.2.2 

FCN Fully-Convolutional Network 3.2.3 

NMS Non-Maximum Suppression 3.2.3 

MLP Multi-Layer Perceptron 8.1.2 

RGB Red-Green-Blue 8.1.2 

ReLU Rectified Linear Unit 8.1.2 
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1 Introduction 

Optical Character Recognition (OCR) is the electronic or mechanical conversion of 

images of typed, handwritten or printed text into machine-encoded text.  Deep learning 

is part of a broader family of machine learning methods based on artificial neural 

networks that imitates the workings of the human brain in processing data and creating 

patterns for use in decision making.  Deep learning has become ubiquitous as part of 

OCR, but there are few examples of research into whether the two technologies are 

feasible for deployment on a mobile platform. 

The purpose of this thesis is to research and analyse which approach to OCR performs 

the best in the context of a mobile application using image recognition.  Specifically, in 

an application developed to accurately identify prescription drugs and to help patients in 

avoiding situations where prescribed medication may be harmful when taken with certain 

other prescription medication. 

1.1 Problem and motivation 

In 2017 more than 6.6 million Swedes took at least one prescription medication, 

corresponding to approximately 66% of the population.  The largest proportion of these 

users is found in age groups 65 years and above [1].  In the US, preventable medical errors 

are the third leading cause of death after heart disease and cancer, with the largest subset 

of medical errors being medication error [2] [3].  On top of this, Sweden has an aging 

population – the percentage of Swedes above the age of 65 has grown from under 12% 

in 1960 to over 20% in 2018 [4]. 

In 2016 the National Library of Medicine (NLM) hosted the Pill Image Recognition 

Challenge as part of its research and development in Computational Photography Project 

for Pill Identification (C3PI).  The Challenge asked for submissions from teams that 

would contribute to the creation of a software system that can match photos taken by a 

smartphone to the NLM database of high-resolution prescription pill images.  The winner 

of this competition, Zeng et al [5] produced an application that recognised the correct pill 

within the top-5 results at 83% accuracy.  Delgado et al [6] later demonstrated it was 

possible to produce results within the top-5 at 94% accuracy under comparable, though 

not identical configurations. 
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1.2 Background 

1.2.1 Optical Character Recognition 

One facet of image recognition technology is OCR, or the electronic or mechanical 

conversion of images of typed, handwritten or printed text into machine-encoded text, 

whether from a scanned document, a photo of a document, a scene-photo or from subtitle 

text superimposed on an image [7].  After text is detected at a line/word level there are 

many methods that can be used to convert the text which generally come from three main 

approaches [8]: 

1. Classic Computer Vision Techniques (CCVTs), typically involving applying 

filters to make characters stand out from the background, contour detection to 

recognise the characters individually and image classification to identify the 

characters. 

2. Standard Deep Learning (StanDL), using an artificial neural network that 

combines multiple nonlinear processing layers that uses simple elements 

operating in parallel. 

3. Specialised Deep Learning (SpecDL) that uses such technologies as 

convolutional-recurrent neural networks, such as or Semi-Supervised End-to-End 

Scene Text Recognition (SEE) and Efficient Accurate Scene Text detector 

(EAST). 

The first recorded uses of this technology can be traced as far back as the 19th century in 

reading devices for the visually impaired.  In 1904 Emanuel Goldberg (1881 - 1970) 

developed a machine that read characters and converted them into standard telegraph code 

(and would later develop an OCR device for searching microfilm archives that would be 

acquired by IBM) [9], while around the same time Edmund Fournier d'Albe (1868 - 1933) 

developed a handheld scanner (see Figure 1) that, when moved across a printed page, 

produced an audio tone that corresponded to specific letters or characters [10].  
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Figure 1- A detail view of d'Albe's 'Octophone' scanning device, invented in 1913. [11] 

1.2.2 Deep Learning 

Deep learning, also known as deep structured learning or differential programming, is a 

far more recent development in technology, the concept of which was first presented as a 

part of a broader family of machine learning methods based on artificial neural networks 

that imitates the workings of the human brain in processing data and creating patterns for 

use in decision making in 1986 [12].  Machine learning can be loosely described as a self-

adaptive algorithm that gets increasingly improved analysis and patterns with experience 

or with newly added data, and deep learning utilises a hierarchical level of artificial neural 

networks to carry out the process of machine learning.  The artificial neural networks are 

built like the human brain, with neuron nodes connected together like a web, as shown in 

Figure 2. While traditional programs build analysis with data in a linear way, the 

hierarchical function of deep learning systems enables machines to process data with a 

nonlinear approach.  Deep learning allows computational models that are composed of 

multiple processing layers to learn representations of data with multiple levels of 

abstraction [13]. 

 

Figure 2- Illustration of two traditional neural networks: a Single-Layer Perceptron (SLP) and a Multi-Layer 

Perceptron (MLP). 
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One of the biggest advantages of using deep learning over standard machine learning is 

its ability to execute feature engineering without additional resources.  In this approach, 

an algorithm scans the data to identify features which correlate and then combine them to 

promote faster learning without being told to do so explicitly, as illustrated in Figure 3.  

Another advantage is the elimination for the need of expensive and time-consuming data 

labelling as the algorithms can learn unsupervised or semi-supervised [13]. 

 

Figure 3- Traditional machine learning flow vs Deep learning flow. 

These methods have dramatically improved the state-of-the-art in image classification, 

object detection, object tracking, pose recognition, video analytics, synthetic picture 

generation and many other domains such as drug discovery and genomics.  Deep learning 

approaches like neural networks can be used to combine the tasks of localising text, or 

text detection, in an image along with understanding and converting the text into machine 

language, or text recognition. 

1.3 Research questions 

Given that there are several methods to accomplish OCR, our research question is: 

In the context of a mobile application using image recognition to scan prescription 

medication labels, which approach to OCR provides the best performance? 

In seeking to answer this question, additional arising issues will need to be addressed, 

such as: 

• What is meant by ‘performance’ in this setting and what criteria can be used to 

measure it 

• To what extent is it possible to design a fair comparison of approaches to reading 

text that are radically different, and 

• What potential extraneous factors could skew the results of performance tests. 
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1.4 Aim and purpose 

Incorporating OCR into a mobile application that simply and easily can scan a 

prescription medication container, accurately read the label and provide the user with 

information regarding the medication could prove to be a valuable tool in reducing the 

number of preventable medical errors.  To that aim this research seeks to compare three 

methods of OCR deployed in a mobile device in order to determine not only which 

method provides the best performance in terms of accuracy but also in regarding memory 

consumption, power drain and speed. 

1.5 Limitations 

1.5.1 Prescription medicine labels 

The dataset used in the practical case study (see 2.2.1) consists of scanned prescription 

medicine labels of varying size, resolution and quality.  These are all flat scans in two 

dimensions.  As such, how the three methods of OCR process non-planar or non-paper 

objects cannot be considered.   

1.5.2 Hardware limitations 

Testing and analysis of the three methods of OCR is to be conduction exclusively on 

Android mobile platforms.  No consideration could be given to other platforms such as 

iOS.  The primary mobile device used to conduct the case study is a Huawei P30 (for 

hardware specifications see Appendix 2: Case study details).  No other Android devices 

could be considered due high cost and restrictions stemming from COVID-19. 

1.5.3 Android version limitations 

Testing of the three methods of OCR on the Android platform will be limited to Android 

version 10.0.  Both in Sweden and worldwide Android versions 9.0 and 10.0 are the most 

commonly used, with 29.92% and 41.97% of Swedish, and 32.43% and 22.06% of 

worldwide Android using version 9.0 and 10.0 respectively [14] (see Figure 4).  Rather 

than test the three methods of OCR on every Android version, the decision was made to 

conduct tests on only the most used version of platform in Sweden.   
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Figure 4- Distribution of Android versions in Sweden and worldwide. 

1.5.4 Deep learning models 

The choice was made to use pre-trained models Tesseract 4.1.1 and EAST instead of 

training these neural networks.  This decision was made after reading Tesseract’s 

documentation that advised that training the neural networks could potentially take weeks 

alone [15], and initial testing that showed the pre-trained neural networks were 

abundantly fit for purpose. 

2 Methodology 

This study has been conducted both through theoretical research and practical 

implementation of OCR and deep learning, following the acquisition of prescription 

medication labels forming the test dataset. 

2.1 Literature search 

Deep learning and especially OCR are by no means new technologies and thus have been 

the subject of a substantial amount of academic research in a wide variety of applications, 

both individually and in collaboration.  However, as shown below, the alliance of these 

two technologies on mobile platforms is a more recent development, with the majority of 

academic research being focused more upon the feasibility and the accuracy of the results 

rather than performance. 

A search of the following keywords on Summon@HKR yielded a substantial number of 

results even when filtered for peer-reviewed content.  The number of results when 

conjoining search terms reduces significantly, as shown in Figure 5: 
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Figure 5- The number of search results using the Summon@HKR platform showing the crossover when search using 

joint search terms. 

When using the conjoined search term ‘optical character recognition AND deep learning 

AND mobile’, there was a total yield of 409 articles at the time of writing.  Using alternate 

search terms such as ‘OCR’, ‘optical character reader’, ‘DL’ or ‘machine learning’ in 

various combinations produced no more results than the 409 as shown in Figure 5.  When 

the search terms used were then abutted with ‘performance’, this narrows the pool to 340 

peer-reviewed results at the time of writing.  However, of these 340, only a handful – less 

than five – could be considered to explore subjects related to different approaches to OCR 

including deep learning on mobile platforms, and only one of these considered 

performance as a primary concern as well as accuracy. 

The Summon research was integrated with an investigation on Kristianstad University’s 

Databases: the ACM Digital Library, ScienceDirect, SpringerLink, the Institute of 

Electrical and Electronics Engineers digital library and Wiley Online Library. 

2.2 Case study design and implementation 

This section describes the practical component of the thesis: a case study for testing three 

different methods of OCR on the Android platform to measure the accuracy and 

performance of each method. 

One of the challenges of detecting and reading text from prescription medication labels 

is the same as detecting and reading text from random places in a natural scene: 
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• Text density: on a standard printed/written page, text is dense, while on a medicine 

label the text can be sparse. 

• Structure of text: text on a page is structured, mostly in strict rows, while text on 

a medicine label be scattered and may be horizontal or vertical. 

• Fonts: printed fonts in standards texts are uniform, while a medicine label may 

have many different, sometimes stylised fonts and text sizes. 

• Artifacts: Depending on the quality of the image and the design of the label, the 

image can be noisier and contain more artifacts than a standard text image.  

• Location: medicine labels can include cropped/centred text and text that may be 

located in random locations in the image [16].  

This means that deep learning approaches specialised for use in text detection in natural 

scenes, such as OpenCV’s EAST, can also be used to great effect in detecting text in 

images of medicine labels. 

2.2.1 Dataset 

In order to test the three methods of OCR, a large sampling of prescription medicine 

labels was required.  Acquiring this proved to be more challenging than anticipated.  

Initially the Swedish organisations Apoteket and Farmaceutiska Specialiteter i Sverige 

(FASS) were contacted for assistance, but this proved fruitless.  A substantial repository 

of prescription medicine labels was found online at the NLM [17], but this repository was 

structured in such a way that each label was contained in the form of a JPEG file in a 

folder along with several other image JPEGs, such as chemical compound structures, 

various dosage charts, manufacturer logos, and other information, as per Figure 6.  

Accordingly, there were 39,603 folders containing a total of 216,062 images.  There was 

no uniform naming convention to these files to allow for simple extraction of the label 

images exclusively, with each folder was named in hexadecimal code according to the 

NLM’s prescription medicine sorting Application Programming Interface (API). 
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Figure 6- An example of the content of one of 39,603 folders in the NLM repository. 

From these 216,062 images, the goal was to obtain a minimum of 10,000 viable images 

of prescription medication labels.   

The observation was made that of each of the prescription medication labels contained a 

barcode.  An algorithm that scans through images searching for vertical and horizontal 

lines, indicative of a barcode, was created in Java using Aspose.BarCode.  At each pass, 

if no barcode has been found, the image was rotated by 45 degrees and scanned again up 

to a maximum of four times.  

Using this method, in approximately six hours 12,455 images were filtered.  Out of these, 

10 were unusable corrupted JPEGs, and after a manual sorting, a further 256 images were 

false positives (2.06%), leaving a dataset of 12,189 label images.  From this data a random 

selection of 100 images to use in the case study was obtained using a Java program that 

used a modulo method in order have the widest variety of images possible.    

2.2.2 Testing parameters 

In terms of measuring the performance of the three methods of OCR, the parameters that 

are being assessed as are follows: 

• Time: the taken for each individual image to be scanned and the total time taken 

for all images in the dataset to be scanned. 

• Accuracy: a sample of 100 images for each of the three methods programmatically 

checked against a list containing the medicine names in each image for accuracy 

of the text recognition, and the findings are extrapolated as a percentage.  A result 
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was deemed positively accurate if the correct name of the medication appears in 

the scanned text (see Figure 7), whereupon the outputted text can be cross-

referenced with a database of prescription medications in a real-world scenario.  

A result was deemed a ‘near miss’ if the output is one character away from being 

correct, which was checked manually. 

• Central Processing Unit (CPU) usage: Average percentage of and CPU usage over 

the time taken to scan 100 images as well as a range of CPU use. 

• Space: the minimum and maximum amounts of native memory heap used over 

the time taken to scan all images in the dataset, and as an average over time.  

Native memory was selected as a parameter over other memories as the Tesseract 

and EAST libraries are written in C and C++ code, and use only native memory. 

• Power consumption: the amount of power consumed as a percentage of total 

battery capacity over 100 images scanned. 

 

Figure 7- An example of a prescription medicine label (left) and the OCR output (right) using Tesseract 3.05. 

The decision was made to conduct tests using 100 images rather than the full dataset of 

12,189 was made due to the consistency of the results irrespective of the size of the testing 

sample and the time it took to process the results (see Table 7).   
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2.2.3 Android application 

An application built in Android Studio serves to ‘host’ the three methods of optical 

character recognition, give an output to the scanned images in the form of plaintext and 

to provide performance data on each method as per a list of selected parameters (see 

2.2.2).  As such, the application must be capable of: 

• accessing sample images stored in devices' external storage as per typical mobile 

photo storage 

• recording the duration of processing of each individual image and the total 

processing duration of the sample data 

• writing results to a log folder 

• logging memory information, and 

• recording power consumption. 

To that end, the Android application designed to house the methods for OCR also 

measures the performance of the working application using the tools Android Profiler and 

Battery Historian.  The tests are conducted in two phases: 

1. The first test phase involves profiling performance parameters and accuracy (see 

2.2.2) with the phone connected to a PC via a USB cable.  This involves:  

a. starting the testing application, an Android Package (APK) file 

b. starting the Android Profiler tool on the PC 

c. commencing scans of the 100 dataset images 

d. exporting the test results to the PC 

2. The second test phase is solely for measuring power consumption where the phone 

is not connected to a power source.  This involves: 

a. resetting battery statistics 

b. commencing scans of the 100 dataset images 

c. dumping battery data onto the PC 

d. creating a bug report from the raw data  

e. importing data into the Battery Historian tool 

In addition to the fact that the power consumption test could only be done with the phone 

not being connected to a power source, tests are done in two parts address two of the sub-

questions raised in 1.3: testing all performance parameters at once significantly affected 

the time it took to process images during initial testing phases.   

https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/topic/performance/power/setup-battery-historian
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Each test outputs a log folder containing: 

• scan times for each individual image are presented as a list with the corresponding 

image number contained in one Comma Separated Values (CSV) file 

• CPU and memory usage are presented graphically using Android Profiler 

• power consumption is contained in a Docker file, and 

• for measuring accuracy, the resulting text output from a scanned image is checked 

against an array list in code imported from CSV file containing the names of 

medicines. 

2.2.4 Methods for OCR: Tesseract settings 

Tesseract is the OCR engine used in various applications in testing the three approaches 

to OCR for the case study (see 3.2).  As the purpose of the experiment is to compare the 

performance of a CCVT with two methods of OCR that incorporate deep learning, the 

version that is used for the purposes of the experiment is the latest 3.0x version, 3.05 

(released December 2015).  Tesseract gives developers a number of options for scanning, 

including the Tesseract engine, segmentation and dictionary options (see Appendix 2: 

Case study details).  In order to evaluate which options would produce the accurate 

results, subset of 10 images were scanned and assessed.  As a result, Tesseract 3.05 was 

deployed using the default engine, optimised for sparse text with orientation and script 

detection (OSD), and the dictionary disabled. 

The same segmentation developer options are available in Tesseract 4.1.1 as are in 

version 3.05 but with some novel engine settings introduced in version 4.1.1 (see 

Appendix 2: Case study details), and the same subset tests were conducted in order to 

evaluate which options gave the best accuracy.  As a result, for testing StanDL, Tesseract 

4.1.1 was deployed using the Long Short-Term Memory (LSTM) engine, optimised 

assuming the scanned image was a single uniform block of text, and the dictionary 

disabled. 

In testing SpecDL, Tesseract 4.1.1 was deployed using the LSTM engine, optimised 

assuming the scanned image was a single word of text, as per the bound boxes provided 

by EAST, and the dictionary disabled. 
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3 Literature review 

The literature review aims at investigating previous work in the field as well as 

establishing the foundation for the proposed case study in consideration of the scarcity 

on academic research given to this specific area. 

3.1 Related work 

In 2019 Benaddy et al. employed Deep Convolutional Neural Networks (DCNN) (see 

Appendix 1: Neural network terminologies) in order to improve the accuracy in 

identifying Tifinagh characters [18].  This technique involves using a deep learning 

algorithm which can take in an input image, assign importance to various aspects/objects 

in the image and be able to differentiate one image from the other.  This proposed system 

was tested on data set of approximately 25,000 and achieved the best recognition accuracy 

(99.10%) when compared to other established OCR methods such as the horizontal and 

vertical centerline or baseline of characters.  However, this was an improvement of only 

0.07% on the previously most accurate method of a combination of multiple classifiers 

with statistical features. 

Roy et al. had already adopted and improved on this principle in 2017 when they 

employed a layer-wise technique of DCNN in order to improve the accuracy in 

identifying Bangla characters [19].  This technique DCNN incorporated with the layer-

wise training model, which is a multi-stage process that involves adding layers of 

convolutional and pooling processes followed by fully connected layers which contain 

multiple neurons, and applies the back-propagation algorithm to find the weights of 

importance.  This layer layer-wise-trained DCNN produced results that improved upon 

standard DCNN nearly 10%. 

In 2018 Jangid & Srivastava performed a similar study using Devanagari [20].  This layer-

wise-trained DCNN produced results that improved upon standard DCNN by up to 1.5% 

across sample sizes of up to almost 57,000 characters. 

However, as noted in 3.2.2, the additional resources required for the use of neural 

networks in conjunction with OCR can be considerable.  Yet, there seems to be scarcity 

of research into the application of deep learning in OCR in regards to the performance 

costs of doing so, and whether this is even feasible on a mobile platform integrated into 

a mobile application that expects real-time results. 
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Yin et al. expanded on Jangid & Srivastava’s researched further in 2019 using deep 

learning techniques to improve existing OCR approaches for recognising Chinese 

uppercase character by considering network weight, and test time [21].  Generally, the 

deeper the number of layers of the neural network and the more parameters, the more 

accurate the conclusions are, but accurate results mean more computing resources are 

consumed.  In their study Yin et al. reduced overhead through the practice of ‘pruning’, 

or the removal of parameters that do not contribute significantly to the output.  This is 

achieved by identifying the most redundant neurons using an Average Percentage of 

Zeroes (ApoZ) algorithm and removing some of the unnecessary network neurons and 

retaining the weight parameters which are important to the network and reducing the 

parameters in order to reduce the computational complexity of the model.  Using this 

method, accuracy decreased by 1.26% when compared with a standard Convolutional 

Neural Network (CNN) but achieved a network weight reduction of 96.5%. 

Likewise, Valueva et al. researched two techniques in combination to reduce hardware 

costs in the implementation of CNN architecture [22].  In their application of a CNN, the 

neural network is divided into distinct hardware and software partitions to increase 

performance and reduce the cost of implementation resources.  They combined this with 

novel residue number system in the hardware part of the convolutional layer of the CNN 

to implement the convolutional layer of the neural network.  A residue numeral system is 

a numeral system representing integers by their values modulo several pairwise coprime 

integers called the moduli.  This ‘multi-modular arithmetic’ system is widely used for 

computation with large integers, typically in linear algebra, because it provides faster 

computation than with the usual numeral systems, even when the time for converting 

between numeral systems is taken into account [23].  The implementation of these two 

methods in combination showed a reduction in hardware costs of 7.86% to 37.78% and 

reduced the average time of image recognition by 41.17%. 

3.2 Three approaches to OCR 

Of all the peer-reviewed articles found using the joint search term combining ‘OCR’ and 

‘deep learning’, a large majority dealt with using OCR in conjunction with deep learning 

in reading hand-written non-Latin script languages.  In each of these cases the studies 

follow the typical pattern of: 



 

21 

 

1. Identify the problem language. 

2. Propose a deep learning-aided OCR technique for improving recognition 

accuracy. 

3. Conduct tests on an existing or generated database of words and characters. 

4. Report on results. 

These studies proved extremely useful in helping selection what type of standard deep 

learning and custom deep learning platform to apply when conducting our own tests. 

3.2.1 Classic computer vision techniques: Tesseract 3.05 

Tesseract is an open source OCR released under the Apache License, originally 

developed by Hewlett-Packard as proprietary software between 1985 and 1995.  It was 

released as open source in 2005 and development has been supported by Google since 

2006 [24].  Before machine learning and deep learning became ubiquitous in OCR around 

the 2010s, Tesseract was considered one of the most accurate open-source OCR engines 

available at that time [25].  

Text image processing in Tesseract 3.05 follows a traditional step-by-step pipeline, as per 

Figure 8: 

1. A connected component analysis in which outlines of the components are stored.  

Outlines are gathered together by nesting into Blobs.   

2. Blobs are organized into text lines, and the lines and regions are analysed for 

fixed-pitch or proportional text.    

3. Text lines are broken into words differently according to the kind of character 

spacing:  

a. Fixed-pitch text is chopped immediately by character cells. 

b. Proportional text is broken into words using definite spaces and fuzzy 

spaces.  

c. Recognition proceeds as a two-pass process:  

d. An attempt is made to recognise each word in turn.  Each word that is 

satisfactory is passed to an adaptive classifier as training data.  The 

adaptive classifier can then, more accurately, recognize text lower down 

the page.   
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e. A second pass is run in which words that were not sufficiently recognised 

are recognised again to compensate for the adaptive classifier still 

adapting on its first pass. 

2. The final phase resolves fuzzy spaces and checks alternative hypotheses for the 

x-height to locate small-cap text. [8] [26] 

 

Figure 8- An illustration of the Tesseract OCR architecture. 

3.2.2 Standard deep learning: Tesseract 4.1.1 

As of version 4 (released October 2018) Tesseract incorporated Long Short-Term 

Memory (LSTM) within a Recurrent Neural Network (RNN) architecture (see Appendix 

1: Neural network terminologies), using a text line recognizer in its new neural network 

subsystem.  In modern OCR, it is ubiquitous to use a CNN to recognise an image that 

contains a single character, but in Tesseract 4 text that has arbitrary length and a sequence 

of characters is solved using RNNs and LSTM.  The Tesseract input image in LSTM is 

processed in bound boxes line by line that inserts into the LSTM model and gives the 

output [27]. 

According to Tesseract’s own documentation, the Tesseract 4 neural network subsystem 

is heavily compute-intensive, using the order of ten times the CPU resources of the base 

Tesseract unless adequate mitigation in the form parallel processing is not undertaken 

[15]. 

3.2.3 Specialised deep learning: OpenCV’s EAST and Tesseract 4.1.1  

OpenCV’s EAST text detector is a deep learning model based on a novel architecture and 

training pattern.  Its sole function is text detection in an image, not actual recognition or 

reading of the text.  EAST is used to detect text in an image and bind text in horizontal 

and rotated bounding boxes which are divided into individual images (see Figure 9), 

which are then fed into a text recognition method [28], in this case Tesseract 4.1.1. 
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Figure 9- An example of a prescription medicine label with bounding applied by OpenCV's EAST (above) and the 

resulting separation of the image into bound boxes for text recognition (below). 

EAST uses a single pipeline that directly predicts words or text lines of arbitrary 

orientations and quadrilateral shapes in full images, eliminating unnecessary intermediate 

steps, such as candidate aggregation and word partitioning, with a single neural network.  

The text detection pipeline has two stages, as per Figure 10: 

3. A Fully-Convolutional Network (FCN) (see Appendix 1: Neural network 

terminologies) to directly produce word or text-line level prediction, which could 

be rotated rectangles or quadrangles.  

4. A Non-Maximum Suppression (NMS) merging state to yield the final output. 

The neural network model is trained to directly predict the existence of text instances and 

their geometries from full images.  The model is an FCN adapted for text detection that 

outputs dense per-pixel predictions of words or text lines: an image is fed into the FCN 

and multiple channels of pixel-level text score map and geometry are generated.  One of 

the predicted channels is a score map whose pixel values are in the range of [0; 1].  The 

remaining channels represent geometries that encloses the word from the view of each 

pixel. The score stands for the confidence of the geometry shape predicted at the same 

location.  Thresholding is then applied to each predicted region, where the geometries 

whose scores are over the predefined threshold is considered valid and saved for later 
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NMS.  The output after NMS, a post-processing algorithm responsible for merging all 

detections that belong to the same object [29], is considered the final output of the pipeline 

[28]. 

 

Figure 10- The structure of the EAST text detection FCN. 

EAST is considered to be wholly robust, capable of localizing text even when it is blurred, 

reflective, or partially obscured.  Regarding performance, since the EAST’s deep learning 

model is end-to-end, it is possible to avoid computationally expensive sub-algorithms that 

other text detectors typically apply, including candidate aggregation and word 

partitioning. 

4 Results & analysis 

Table 1 is a general overview of the results from scanning the dataset of 100 images using 

each of the three OCR methods on the Android platform.  A more in-depth review is of 

these is presented in this chapter.  The results are broken down into categories of 

accuracy, time and resource use. 

Table 1- Overview of the results from testing 100 images using the three methods of OCR on the Android platform 

 CCVT -  

Tesseract 3.05 

StanDL -  

Tesseract 4.1.1 

SpecDL - EAST + 

Tesseract 4.1.1 

Accuracy 50% 76% 74% 

Total time for 100 

images (m, s) 

23m 44s 28m 16s 60m 29s 

Average time per 

label (seconds) 

14.24 16.97 36.29 

Average CPU 

usage 

12% 12% 20% 
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Native memory 

heap avg. (MB) 

150 93 515 

Battery usage 1.82% 5.23% 8.25% 

4.1 Accuracy 

Table 2 provides a more in-depth overview of the accuracy results from the test of the 

three methods.  For a complete breakdown of the accuracy of all three methods, see 

Appendices 3: Test results.   

Table 2- A detailed presentation of the accuracy of each of the three method of OCR on the Android platform. 

 CCVT -  

Tesseract 3.05 

StanDL -  

Tesseract 4.1.1 

SpecDL - EAST + 

Tesseract 4.1.1 

Complete match  50% 76% 74% 

Near miss 19% 10% 15% 

 

Table 2 shows that StanDL and SpecDL have the best accuracy of the three OCR 

methods, but the CCVT has the best potential for improvement, with 19% of scan results 

being only one character away from being a complete match.  This does not count for 

much, however, as Tesseract 3.05 is the only method not to use any form of deep learning 

and therefore does not have the capability to be further trained without developer input 

and further iterations.  Tesseract 4.1.1 and EAST, on the other hand, with their deep 

learning mechanisms, could be further trained and optimised by the user rather than by 

the developer.  With more training, the StanDL and SpecDL methods could potentially 

achieve an accuracy rate approaching 86% and 89% respectively by correcting each ‘near 

miss’.  

Accuracy could potentially be improved across all methods with further pre-processing 

of images before they are fed into the OCR methods, and by further testing with different 

combinations of segmentation and OCR engine parameters. 

4.2 Time 

Table 3 provides a more in-depth overview of the time taken for each image to be 

processed individually and as a whole dataset from the tests conducted.  For a complete 

breakdown of the time taken for each image to be processed by each all three methods, 

see Appendices 3: Test results. 
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Table 3- A detailed explanation of the time taken for scanning of each image and the dataset of 100 images. 

 CCVT -  

Tesseract 3.05 

StanDL -  

Tesseract 4.1.1 

SpecDL - EAST + 

Tesseract 4.1.1 

Total time for 100 

images (m, s) 

23m 44s 28m 16s 60m 29s 

Time range 

(seconds) 

0.02 ≤ t ≤ 86.11 0.25 ≤ t ≤ 92.35 8.53 ≤ t ≤ 167.11 

Average time per 

label (seconds) 

14.24 16.97 36.29 

# of images 

scanned in ≤ 1s  

1% 9% - 

# of images 

scanned in ≤ 5s 

21% 19% - 

# of images 

scanned in ≤ 10s 

51% 41% 11% 

 

These results show that CCVTs and StanDL are certainly comparable in the fields of total 

time taken to process 100 images, the time range for individual images, and the average 

time taken to process an image.  The standout, however, is StanDLs result in the category 

of images being processed in less than one second: 9% when compared to just 1% for 

CCVTs and zero for SpecDL.  StandDL also shows promising results in the percentage 

of images processed in less than five and ten seconds respectively (19% and 41%).  This 

demonstrates that for use in mobile scanner that aims to provide the user with near-

instantaneous results, StanDL appears to be the best suited. 

When viewing the time taken for each image to be processed when compared to the size 

of the image (see Figure 11, Figure 12 and Figure 13), there does not appear to be any 

substantive correlation between file size and time when using either CCVTs or SpecDL.  

However, there does appear to be some correlation when using only StanDL, especially 

with larger file sizes.  This could be explained by Tesseract 4.1.1’s use of LSTM, which 

is a form of RNN (see Appendix 1: Neural network terminologies): the larger the image, 

the more feedback in the RNN. 
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Figure 11- A graphical depiction of the time taken to scan 100 individual images depending on the size of the image 

using Tesseract 3.05. 

 

Figure 12- A graphical depiction of the time taken to scan 100 individual images depending on the size of the image 

using Tesseract 4.1.1. 

 

Figure 13- A graphical depiction of the time taken to scan 100 individual images depending on the size of the image 

using EAST + Tesseract 4.1.1. 
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When examining the time taken to process individual images according to the 

dimensional rather than file size, the does not appear to be any correlation between 

dimensional size of an image and the time taken for the image to be processed using this 

CCVT and StanDL, as per Figure 14 and Figure 15.   

 

Figure 14- A graphical depiction of the time taken to scan 100 individual images depending on the dimensions of the 

image using Tesseract 3.05& 4.1.1. 

Conversely, there appears to be a strong correlation between dimensional size of an image 

and the time taken for the image to be processed using SpecDL, as per Figure 15.   

 

Figure 15- A graphical depiction of the time taken to scan 100 individual images depending on the dimensions of the 

image using EAST + Tesseract 4.1.1. 

The correlation between dimensional size of an image and the time taken for the image 
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function of text detection (see 3.2.3): the larger the dimension of an image, the more 

likelihood there is for text to be detected.  Demonstrating this further is evidence that the 

more bound boxes generated by EAST, the longer an image takes to generate an output, 

as shown by Figure 16.  Overall, this would suggest that rather than the file size of the 

image dictating the scanning time using SpecDL, it would depend on the number of words 

in contained in the image. 

 

Figure 16- A graphical depiction of the time taken to scan each individual images against the number of bound boxes 

generated in processing that image using EAST. 

4.3 Resource use 

Table 4 provides a more in-depth overview of the performance results from the test of the 

three methods.  For a complete breakdown of the performance of all three methods, see 

Appendices 3: Test results. 

Table 4- A detailed explanation of the performance aspect of processing 100 prescription label images using the three 

methods of OCR. 

 CCVT -  

Tesseract 3.05 

StanDL -  

Tesseract 4.1.1 

SpecDL - EAST + 

Tesseract 4.1.1 

Average CPU 

usage 

12% 12% 20% 

CPU usage range 

(% of capacity) 

10 ≤ c ≤ 14 10 ≤ c ≤ 14 10 ≤ c ≤ 85 

Native heap 

memory avg (MB) 

78 93 515 
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Native heap 

memory range 

(MB) 

63 ≤ m ≤ 140 80 ≤ m ≤ 152 274 ≤ m ≤ 2050 

Battery usage 1.82% 5.23% 8.25% 

 

These results show that the performances of the methods for CCVTs and StanDL are 

comparable, while SpecDL is more resource hungry by several orders of magnitude.  

While slightly more resource intense than Tesserect 3.05, the multiple cores in the P30 

appear to be able handle the extra processing that LSTM requires despite the developer’s 

warnings [15].  Overall, this serves to suggests that CCTVs and StanDL are more suited 

to a wider range of mobile devices, while all but the higher end mobile devices are 

currently equipped to handle the resource costs of SpecDL.   

As shown in Figure 17, Figure 18 and Figure 19, there appears only to be a slight 

correlation between the file size of an image and the amount of native heap memory used 

for all three methods of OCR.  Though, it is apparent for all three methods of OCR is that 

the pattern of native heap memory is consistent over the 100 images, albeit at slightly 

different magnitudes for Tesseract 3.05 and 4.1.1, and at a substantially larger magnitude 

for EAST + 4.1.1. 

 

Figure 17- A graphical representation of native heap memory used to process individual images according to file size 

using Tesseract 3.05 & 4.1.1 

0

50

100

150

200

0

5

10

15

20

N
at

iv
e 

h
ea

p
 m

em
o

ry
 (

M
B

)

Im
ag

e 
si

ze
 (

M
B

)

Memory used to process images

Native heap memory used to process individual images according to 
file size using Tesseract 3.05 & 4.1.1 

Image size Tesseract 3.05 Tesseract 4.1.1



 

31 

 

 

Figure 18- A graphical representation of native heap memory used to process individual images according to file size 

using EAST + Tesseract 4.1.1 

There is a far more pronounced association between native heap memory used and 

dimension size in all three methods of OCR, as shown in Figure 19 and Figure 20.  As 

with comparing file size and memory cost, it is apparent for all three methods of OCR is 

that the pattern of native heap memory use is consistent over the 100 images, albeit at 

slightly different magnitudes for Tesseract 3.05 and 4.1.1, and at a substantially larger 

magnitude for EAST + 4.1.1. 

 

Figure 19- A graphical representation of native heap memory used to process individual images according to images 

dimensions using Tesseract 3.05 & 4.1.1 
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Figure 20- A graphical representation of native memory used to process individual images according to dimensions 

using EAST + Tesseract 4.1.1. 

Unlike the time taken to process each images see (Figure 16), there does not appear to be 

any substantive association between the number of bound boxes generated by EAST in 

the SpecDL method, as shown in Figure 21. 

 

Figure 21- A graphical representation of native heap memory used to process individual images according to the 

number of bound boxes generated by EAST. 
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the CCTV method.  Assuming these results are accurate, this could be explained in 

Tesseract’s documentation [15] as mentioned in 3.2.2: the Tesseract 4 neural network 

subsystem is heavily compute-intensive, using the order of ten times the CPU resources 

of the base Tesseract unless adequate mitigation in the form parallel processing is not 

undertaken.  The P30 does possess multiple cores (see Appendix 2: Case study details) 

and appears to have had no issue mitigating the LSTM network used by Tesseract 4.1.1 

but this parallel processing may have not been detected by Android Profiler in measuring 

the CPU usage.  This would also explain why Tesseract 3.05 and Tesseract 4.1.1 had 

practically identical CPU usage results. 

5 Discussion 

The results garnered in Chapter 4 show that, perhaps unsurprisingly, the two methods of 

OCR that utilise deep learning provide not only the greatest accuracy but also the potential 

for improvement.  Regarding speed and performance, the StanDL method was the 

standout, providing by far the most near-instant results at a reasonable resource cost, 

while SpecDL was both slow and by far the most resource hungry, making it unfeasible 

for use in a scanner on a mobile device in a real-world application. 

5.1 Label examples and analysis 

When attempting to establish what determines how long an image takes to process, 

Chapter 4 establishes that there appears to be no strong correlation between image file 

dimension size and time for CCVTs and SpecDL, while the is a correlation using StanDL 

with is particularly pronounced is larger image sizes.  There is a strong association 

between both file size and dimensional magnitude and time when using SpecDL due to 

the nature of the text detection algorithm. 

Table 5 provides a selection label images, their file size and dimension, and processing 

times using the three method of OCR.  The results of all processed images contained 

therein were either accurate or deemed a ‘near miss’ under manual review. 

 

 

 



 

34 

 

Table 5- An example of selected label images, their file size and dimension and processing times using the three method 

of OCR. 

Image number File size 

(MB) 

Width 

(px) 

Height 

(px) 

Tesseract 

3.05 

(seconds) 

Tesseract 

4.1.1 

(seconds) 

EAST + 

Tesseract 

4.1.1 

(seconds) 

image_02300.jpg 9.94 749 529 86.11 92.35 38.78 

image_02398.jpg 3.63 413 263 8.85 19.99 17.04 

image_06616.jpg 0.18 615 282 2.52 0.61 12.02 

 

Figure 22 shows image_2300.jpg at a substantially reduced size, it being one of the largest 

file sizes in the dataset at 9.94MB.  All three methods OCR took over 30 seconds to 

process this one image, with the CCVT and StanDL methods taking over well over 60 

seconds, as per Table 5.  Although the roughly 50% of the image is negative space, the 

text contained in the label presents both vertical and horizontal text in dense sections, 

making it especially difficult for OCR methods use text segmentation, as does Tesseract 

3.05 and 4.1.1, rather than text detection as does EAST.  Additionally, numbers of dense 

areas of smaller text have proven to be especially challenging to all methods of OCR, 

resulting in significantly higher processing times in these cases.  In this case, EAST 

generated no less than 85 bound boxes for processing. 

 

Figure 22- image_2300.jpg 
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Figure 23 shows image_02389.jpg at its actual size although it is still in the top 20% of 

the file sizes in the dataset.  All methods of OCR used processed the image in under 20 

seconds.  As the majority of the text contained in the image is horizontal and the text is 

relative sparse when compared to Figure 22, processing the image takes less, but not 

insubstantial, time for all three methods.  The correlation between image size and 

processing serves to explain why the StanDL method took the longest time of the three 

methods to process this image in particular. 

 

Figure 23- image_02398.jpg 

Figure 24 is the smallest file in Table 5 and one of the smallest in the dataset, although it 

is larger dimensionally than Figure 23.  Despite this, two of the three methods of OCR 

processed this image in less than five seconds.  As with Figure 22, a large portion of this 

image is negative space and presents text in dense blocks.  Again, it is evident that the 

dense area of small text proved to be an issue for EAST. 

 

Figure 24- image_06616.jpg 
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5.2 Problem labels 

Out of the dataset of 100 label images, 6% of these could not be processed accurately by 

any of the three methods of OCR (see Appendices 3: Test results).  When examining these 

labels, there are two recurring factors that appear in all 6%: 

• Low resolution, blocky font, as shown in Figure 25 and Figure 26, and 

• Text on a coloured background, as shown in Figure 27. 

 

Figure 25- image_01147.jpg 

 

Figure 26- image_01156.jpg 

 

Figure 27- image_07343.jpg 
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Should any prescription medication scanner that uses one of the three methods of OCR 

utilised here become popular, medicine manufacturers may want to take this into 

consideration in designing labels. 

6 Conclusion 

This study has explored the subjects of OCR and deep learning with the ultimate goal of 

examining which particular method of OCR would be best suited for a mobile platform 

in the specific context of a prescription medication label scanner.  A review of peer-

reviewed literature found that there was a definite scarcity of research on the subject of 

OCR that incorporates deep learning on specifically on mobile platforms, and practically 

none were performance was the main consideration.  A case study conducted using three 

methods of OCR, two of which utilised deep learning to varying degrees, proved that one 

of these methods was categorically more suited than other for the particular context in 

which the study was conducted. 

6.1 Research answers 

The preceding research served to answer the question: 

In the context of a mobile application using image recognition to scan prescription 

medication labels, which approach to OCR provides the best performance? 

The method of OCR that provides the best combination of accuracy, speed and resource 

using has proven to be Standard Deep Learning, or Tesseract 4.1.1 in this particular case.  

StanDL proved to be the most accurate method, had the highest number of images 

processed in less than one second and demonstrated that it had very reasonable resource 

costs – comparable to methods that did not utilise deep learning.    

6.2 Ethics, sustainable development and societal aspects 

As stated in 1.1, patients misidentifying medication is a real concern in, and the problem 

is only growing in magnitude in this country as the population tends toward a higher 

median age.  It is important to be equipped with the right tools to achieve the highest 

accuracy in the identification of prescription medication for the health and well-being of 

the population.   
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If an application for scanning prescription medication was to be further developed, 

consideration of how to securely store patient data will to be addressed.  As people store 

sensitive information on their mobile phones, any application using OCR implementation 

needs to be secure because as it is accessing the phone’s camera and external storage. 

Additionally, an official government/public health institution would be required to 

acquire accurate data of each medication and any potentially conflicting medications.  

Battery consumption on a single phone may be insignificant but when considering an 

application with multiple millions of users, battery consumption and temperature increase 

during app usage becomes an issue.  Every step towards optimisation matters. 

6.3 Future work 

Future work on this study could resolve some of the following areas of improvements: 

• Expanding testing hardware and software to include other models of mobile 

phone and other mobile software platforms, especially iOS 

• Expanding the dataset to include images of prescription medicine labels in real 

world environments rather than digital scans 

• Training neural networks for the specific purpose rather than using a pre-trained 

network 

• Testing various software models of each OCR method 

• Experimenting with parallelisation of OCR methods over multiple cores to 

achieve faster performance. 
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8 Appendices 

8.1 Appendix 1: Neural network terminologies 

8.1.1 Feedforward neural networks 

Feedforward neural networks are named after the way they channel information through 

a series of mathematical operations performed at the nodes of the network.  Input 

examples are fed into the network and transformed into an output.  Under supervised 

learning the output would be a label, or a name applied to the input and raw data is mapped 

to categories, recognising patterns that may signal.  In this network, the information 

moves in only one direction, forward, from the input nodes, through the hidden nodes (if 

any) and to the output nodes.  As information only moves in one direction, there are no 

cycles or loops in the network (see Figure 2) [13]. 

8.1.2 Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN) are a kind of feedforward artificial neural 

network that can take in an input image, assign importance (learnable weights and biases) 

to various aspects/objects in the image and be able to differentiate one from the other.  

The pre-processing required is much lower as compared to other classification 

algorithms; previous methods’ filters are human-engineered, whereas with enough 

training, CNNs have the ability to learn these filters/characteristics.  Convolutional 

networks are neural networks that use convolution in place of general matrix 

multiplication in at least one of their layers [30]. 

While there are many applications for traditional neural network architecture, there are 

several limitations, especially when it comes to image processing.  Traditional neural 

network architecture, or Multi-Layer Perceptron (MLP) use one perceptron, or an 

algorithm for supervised learning of binary classifiers for each input.  The amount of 

weights in an MLP rapidly becomes unmanageable for large images.  Additionally, MLPs 

are usually fully connected, with each neuron in one layer is connected to all neurons in 

the next layer, which often causes overfitting of data. Another common problem is that 

MLPs react differently to an input and its shifted version in that they are not translation 

invariant [31]. 
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In contrast, CNNs take advantage of the hierarchical pattern in data and assemble more 

complex patterns using smaller and simpler patterns.  Therefore, on the scale of 

connectedness and complexity, CNNs are on the lower extreme, using relatively little pre-

processing compared to other image classification algorithms.  This means that the 

network learns the filters that in traditional algorithms were hand-engineered.  This 

independence from prior knowledge and human effort in feature design is a major 

advantage. 

 

Figure 28- Comparison of architecture for MLP and CNN. 

The structural design of CNN is analogous to that of the connectivity pattern of neurons 

in the human brain and was inspired by the arrangement of the visual cortex.   

A CNN usually consists of the following components: 

• Input layer: a single raw image is given as an input.  For a Red-Green-Blue (RGB) 

image its dimension will be AxBx3, where 3 represents the three colours. 

• A convolution layer: a convolution layer is a matrix of dimension smaller than the 

input matrix.  It performs a convolution operation with a small part of the input 

matrix having same dimension.  The sum of the products of the corresponding 

elements is the output of this layer. 

• Rectified Linear Unit (ReLU):  ReLU is mathematically expressed as max(0,x), 

where any number below 0 is converted to 0 while any positive number is allowed 

to pass as it is. 

• Maxpool: this passes the maximum value from amongst a small collection of 

elements of the incoming matrix to the output.  Usually it is a square matrix. 

• Fully connected layer: the final output layer is a normal fully-connected neural 

network layer, which gives the output. [30]. 
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Figure 29- An illustration of a typical CNN. 

8.1.3 Fully-Convolutional Network (FCN) 

A Fully-Convolutional Network (FCN) uses a CNN to transform image pixels to pixel 

categories.  Unlike CNNs, all the learnable layers in an FCN are convolutional so it does 

not have any fully-connected layer.  An FCN transforms the height and width of the 

intermediate layer feature map back to the size of input image through the transposed 

convolution layer, so that the predictions have a one-to-one correspondence with input 

image in spatial dimension (height and width). Given a position on the spatial dimension, 

the output of the channel dimension will be a category prediction of the pixel 

corresponding to the location [32].  

The main advantages of an FCN over a CNN include: 

• Input image size: In a CNN, the fully-connected layer expects inputs of a certain 

size.  Without this connected layer in the network, images of virtually any size 

can be processed.  

• Spatial information: As all output neurons are connected to all input neurons in 

the fully-connected layer in a CNN, this can cause loss of spatial information, 

making segmentation impossible. [33] 
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Figure 30- An illustration of a traditional FCN. 

8.1.4 Recurrent Neural Network (RNN) 

Recurrent neural networks (RNN) are another type artificial neural network derived from 

feedforward neural networks, but unlike feedforward neural networks, can process input 

not just the current input example received, but also what has been perceived previously.  

The decision a RNN at time step t-1 affects the decision it will reach one moment later at 

time step t, meaning RNNs have two sources of input: the present and the recent past, 

which combine to determine how they respond to new data.  Connections between nodes 

form a directed graph along a temporal sequence, allowing it to exhibit temporal dynamic 

behaviour.   

 

Figure 31- An illustration a simple RNN. 

RNNs can use their internal state, or memory, to process variable length sequences of 

inputs.  That sequential information is preserved in the recurrent network’s hidden state, 

which manages to span many time steps as it cascades forward to affect the processing of 

each new example.  It is finding correlations between events separated by many moments 

because an event downstream in time depends upon, and is a function of, one or more 

events that came before. In this way, RNNs share weights over time [34]. 
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8.1.5 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) networks are not so much a different variant of RNN 

architecture, but rather introduces changes to how outputs and hidden state using inputs 

are computed.  Although traditional RNNs can keep track of arbitrary long-term 

dependencies in the input sequences, problems can arise when training a RNN using back-

propagation, where the gradients which are back-propagated can tend towards zero, or 

‘vanish’, or can tend to infinity, or ‘explode’.  This is due to the computations involved 

in the process, which use finite-precision numbers.  RNNs using LSTM units partially 

solve the vanishing gradient problem as they are capable of learning long-term 

dependencies.   

There are several architectures of LSTM units, and common architecture is composed of 

a cell (the memory part of the LSTM unit) and three ‘regulators’ or ‘gates’, of the flow 

of information inside the LSTM unit: an input gate, an output gate and a forget gate.  

 

Figure 32- A schematic of a LSTM unit as used in the hidden layers of an RNN. 

LSTM networks are well-suited to classifying, processing and making predictions based 

on time series data, since there can be lags of unknown duration between important events 

in a time series [35]. 

8.2 Appendix 2: Case study details 

8.2.1 Mobile phone hardware specifications: 

Table 6- Hardware specifications for the Huawei P30 mobile phone 

CPU Huawei Kirin 980 (8 core): 

2x Cortex-A76 @ 2.6GHz 
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2x Cortex-A76 @ 1.92GHz 

4x Cortex-A55 @ 1.8GHz 

(4MB shared L3 cache) 

RAM 6.0 GB, LPPD4X @ 2133 MHz 

Screen resolution 2330x1080 

Battey 3650mAh 

 

8.2.2 Code repositories 

100 image dataset: https://github.com/jbisiach/ImageDataset100.git 

Java image filter: https://github.com/matzab/DataFilter_ 

Android OCR test application: https://github.com/matzab/OCRTest 

8.2.3 Pre-testing results 

Table 7- Tests conducted using Tesserect 3.05 with different sized image sets. 

 10 images 100 images  

Total time 

(seconds) 

99.26 1424.41 

Accuracy 60% 66% 

Average CPU 

usage 

12% 12% 

Memory usage 

range (MB) 

120 ≤ m ≤ 140 120 ≤ m ≤ 250 

Power 

consumption 

0.9% 12.6% 

 

8.2.4 Tessreact & EAST libraries 

Tesseract 3.05: https://github.com/adaptech-cz/Tesseract4Android 

Tesseract 4.1.1: https://sourceforge.net/projects/opencvlibrary/files/4.1.1/ 

EAST: https://github.com/opencv 

8.2.5 Tesseract options 

Tesseract 3.05 engine options: 

1. Tesseract engine only 

https://github.com/jbisiach/ImageDataset100.git
https://github.com/matzab/DataFilter_
https://github.com/matzab/OCRTest
https://github.com/adaptech-cz/Tesseract4Android
https://sourceforge.net/projects/opencvlibrary/files/4.1.1/
https://github.com/opencv
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2. Cube engine only 

3. Tesseract and Cube combined 

4. Default engine only 

Tesseract 4.1.1 engine options: 

1. Tesseract engine only 

2. LSTM only 

3. Tesseract and LSTM combined 

4. Default OCR engine mode. 

Tesseract orientation and segmentation options: 

1. Orientation and script detection only 

2. Automatic page segmentation with OSD  

3. Fully automatic page segmentation, but no OSD, or OCR 

4. Fully automatic page segmentation, but no OSD 

5. Assume a single column of text of variable sizes 

6. Assume a single uniform block of vertically aligned text 

7. Assume a single uniform block of text (default) 

8. Treat the image as a single text line 

9. Treat the image as a single word 

10. Treat the image as a single word in a circle 

11. Treat the image as a single character 

12. Find as much text as possible in no particular order 

13. Sparse text with OSD 

14. Treat the image as a single text line, bypassing ‘hacks’ that are Tesseract-specific.     

Tesseract dictionary options: 

1. Whitelist of characters to recognize 

2. Blacklist of characters to not recognize 

3. Save blob choices allowing acquisition of alternative results 

4. String value used to assign a boolean variable to true 

5. String value used to assign a boolean variable to false 
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8.3 Appendices 3: Test results 

8.3.1 Test results 

Raw test results repository: https://github.com/jbisiach/Test-Results.git 

8.3.2 Accuracy 

Table 8- Comprehensive test results denoting which images were correctly or almost correctly identified using each 

method of OCR 

⚫ denotes exact match 

 denotes near miss 

File Name CCVT -  

Tesseract 3.05 

StanDL -  

Tesseract 4.1.1 

SpecDL - EAST 

+ Tesseract 4.1.1 

image_00000.jpg 
 

⚫ ⚫ 

image_00079.jpg 
 

⚫  

image_00258.jpg ⚫ ⚫ ⚫ 

image_00377.jpg 
 

  

image_00414.jpg 
 

⚫ ⚫ 

image_00478.jpg 
 

 
 

image_00515.jpg ⚫ ⚫ ⚫ 

image_00689.jpg 
 

⚫ ⚫ 

image_00698.jpg ⚫ ⚫  

image_00771.jpg 
 

 
 

image_01147.jpg 
   

image_01156.jpg 
   

image_01294.jpg 
 

  

image_01384.jpg 
 

  

image_01478.jpg 
 

⚫  

image_01569.jpg  ⚫ ⚫ 

image_01660.jpg 
 

⚫  

image_01751.jpg ⚫ ⚫ ⚫ 

image_01842.jpg 
   

image_01936.jpg ⚫ ⚫  

image_02027.jpg 
   

image_02118.jpg 
 

⚫ ⚫ 

image_02209.jpg 
 

⚫ ⚫ 

image_02300.jpg ⚫ ⚫ ⚫ 

image_02398.jpg  ⚫ ⚫ 

https://github.com/jbisiach/Test-Results.git
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image_02489.jpg ⚫ ⚫ ⚫ 

image_02670.jpg ⚫ ⚫ ⚫ 

image_02760.jpg 
 

  

image_02851.jpg  ⚫ ⚫ 

image_02941.jpg 
   

image_03032.jpg  ⚫ ⚫ 

image_03125.jpg 
 

⚫ ⚫ 

image_03216.jpg 
 

  

image_03310.jpg ⚫ ⚫ ⚫ 

image_03401.jpg  ⚫ ⚫ 

image_03495.jpg ⚫ ⚫ ⚫ 

image_03588.jpg  
 

⚫ 

image_03678.jpg ⚫ ⚫ ⚫ 

image_03864.jpg ⚫ ⚫ ⚫ 

image_03957.jpg ⚫ ⚫ ⚫ 

image_04048.jpg ⚫ ⚫ ⚫ 

image_04231.jpg ⚫ ⚫  

image_04322.jpg ⚫ ⚫ ⚫ 

image_04414.jpg ⚫ ⚫ ⚫ 

image_04504.jpg ⚫ 
 

⚫ 

image_04596.jpg ⚫ ⚫ ⚫ 

image_04689.jpg  ⚫ ⚫ 

image_04873.jpg ⚫  ⚫ 

image_04967.jpg 
  

⚫ 

image_05058.jpg 
 

⚫ ⚫ 

image_05240.jpg   ⚫ 

image_05332.jpg 
 

⚫ ⚫ 

image_05423.jpg ⚫ ⚫ ⚫ 

image_05513.jpg ⚫ ⚫ ⚫ 

image_05605.jpg  ⚫ ⚫ 

image_05698.jpg ⚫ ⚫ ⚫ 

image_05789.jpg  
 

⚫ 

image_05879.jpg ⚫ ⚫ ⚫ 

image_05975.jpg ⚫ ⚫ ⚫ 

image_06064.jpg ⚫ ⚫ ⚫ 

image_06157.jpg ⚫ ⚫ ⚫ 

image_06248.jpg 
 

⚫ ⚫ 



 

52 

 

image_06341.jpg ⚫ ⚫ ⚫ 

image_06433.jpg ⚫ ⚫ ⚫ 

image_06525.jpg ⚫ ⚫ ⚫ 

image_06616.jpg ⚫ ⚫ ⚫ 

image_06708.jpg ⚫ ⚫ ⚫ 

image_06799.jpg ⚫ 
  

image_07070.jpg  ⚫ ⚫ 

image_07161.jpg 
  

⚫ 

image_07251.jpg  ⚫ ⚫ 

image_07343.jpg 
   

image_07435.jpg  ⚫ ⚫ 

image_07528.jpg ⚫ ⚫ ⚫ 

image_07618.jpg ⚫ ⚫ ⚫ 

image_07807.jpg ⚫ ⚫ ⚫ 

image_10087.jpg 
 

 ⚫ 

image_10180.jpg  ⚫ ⚫ 

image_10273.jpg 
 

⚫ ⚫ 

image_10364.jpg ⚫ ⚫ ⚫ 

image_10458.jpg  ⚫  

image_10551.jpg  
  

image_10646.jpg  ⚫ ⚫ 

image_10740.jpg ⚫ 
  

image_10831.jpg ⚫ ⚫  

image_10922.jpg ⚫ ⚫ ⚫ 

image_11013.jpg ⚫ ⚫ ⚫ 

image_11104.jpg ⚫ ⚫ ⚫ 

image_11196.jpg ⚫ ⚫ ⚫ 

image_11288.jpg ⚫ ⚫ ⚫ 

image_11379.jpg ⚫ ⚫ ⚫ 

image_11650.jpg  ⚫ ⚫ 

image_11740.jpg ⚫ ⚫ ⚫ 

image_11830.jpg ⚫ ⚫ ⚫ 

image_11938.jpg 
 

⚫ ⚫ 

image_12027.jpg ⚫ ⚫ ⚫ 

image_12127.jpg ⚫ ⚫ ⚫ 

image_12220.jpg  ⚫ ⚫ 

image_12310.jpg 
 

⚫  
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image_12400.jpg ⚫ ⚫  

8.3.3 Time 

Table 9- The time taken in seconds for each image to be processed using each of the three methods of OCR. 

File Name CCVT -  

Tesseract 3.05 

StanDL -  

Tesseract 4.1.1 

SpecDL - EAST 

+ Tesseract 4.1.1 

image_00000.jpg 17.06 6.65 82.98 

image_00079.jpg 26.66 31.83 9.26 

image_00258.jpg 8.44 10.20 18.31 

image_00377.jpg 3.21 8.14 9.71 

image_00414.jpg 5.72 8.80 16.37 

image_00478.jpg 15.63 7.76 8.63 

image_00515.jpg 11.76 36.43 34.17 

image_00689.jpg 8.76 16.66 87.76 

image_00698.jpg 36.43 26.13 74.33 

image_00771.jpg 11.93 19.85 10.13 

image_01147.jpg 11.30 26.54 8.53 

image_01156.jpg 6.23 24.51 10.63 

image_01294.jpg 16.47 12.18 9.00 

image_01384.jpg 5.60 20.60 9.46 

image_01478.jpg 31.54 18.53 11.58 

image_01569.jpg 66.62 83.22 37.1 

image_01660.jpg 2.30 0.84 8.91 

image_01751.jpg 6.50 2.37 41.26 

image_01842.jpg 20.58 14.21 10.31 

image_01936.jpg 8.95 7.61 23.42 

image_02027.jpg 6.47 26.84 11.28 

image_02118.jpg 30.14 34.35 16.25 

image_02209.jpg 1.64 6.44 9.93 

image_02300.jpg 86.11 92.35 38.78 

image_02398.jpg 8.85 19.99 17.04 

image_02489.jpg 23.18 17.74 35.69 

image_02670.jpg 10.32 32.23 72.09 

image_02760.jpg 5.31 0.65 16.61 

image_02851.jpg 2.29 0.74 60.12 

image_02941.jpg 3.25 2.07 10.08 

image_03032.jpg 18.84 4.18 26.55 

image_03125.jpg 4.92 0.85 37.26 



 

54 

 

image_03216.jpg 9.34 4.36 27.31 

image_03310.jpg 6.60 8.20 19.77 

image_03401.jpg 5.16 6.62 16.94 

image_03495.jpg 5.05 8.84 17.61 

image_03588.jpg 12.39 11.95 14.06 

image_03678.jpg 3.76 8.70 52.42 

image_03864.jpg 25.62 23.82 124.46 

image_03957.jpg 6.58 6.90 21.01 

image_04048.jpg 25.22 21.05 15.44 

image_04231.jpg 7.39 3.72 79.55 

image_04322.jpg 16.17 32.41 33.29 

image_04414.jpg 6.24 8.94 34.00 

image_04504.jpg 11.00 27.54 72.69 

image_04596.jpg 3.87 10.90 32.2 

image_04689.jpg 15.84 12.90 16.13 

image_04873.jpg 17.51 19.88 21.15 

image_04967.jpg 11.32 14.17 13.45 

image_05058.jpg 11.63 12.52 14.56 

image_05240.jpg 8.26 7.31 28.35 

image_05332.jpg 11.47 13.88 33.04 

image_05423.jpg 2.11 8.65 37.26 

image_05513.jpg 4.53 20.86 32.34 

image_05605.jpg 3.81 0.77 14.4 

image_05698.jpg 11.20 41.85 80.19 

image_05789.jpg 2.10 7.27 26.08 

image_05879.jpg 7.67 17.91 19.06 

image_05975.jpg 10.54 1.96 44.65 

image_06064.jpg 40.28 40.83 33.77 

image_06157.jpg 32.29 22.65 27.49 

image_06248.jpg 27.61 27.22 31.86 

image_06341.jpg 79.39 45.56 17.31 

image_06433.jpg 25.11 30.59 87.93 

image_06525.jpg 6.90 7.16 15.79 

image_06616.jpg 2.52 0.61 12.02 

image_06708.jpg 7.78 24.33 30.10 

image_06799.jpg 5.11 4.54 30.94 

image_07070.jpg 7.13 12.98 35.24 
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image_07161.jpg 4.13 3.46 9.97 

image_07251.jpg 26.49 33.88 9.66 

image_07343.jpg 30.79 26.09 10.42 

image_07435.jpg 24.53 18.79 37.85 

image_07528.jpg 10.40 19.30 15.15 

image_07618.jpg 6.00 13.42 67.31 

image_07807.jpg 23.78 30.82 135.07 

image_10087.jpg 21.07 17.16 35.03 

image_10180.jpg 26.29 19.65 23.04 

image_10273.jpg 5.53 19.76 11.16 

image_10364.jpg 9.08 18.38 16.15 

image_10458.jpg 6.11 16.26 12.66 

image_10551.jpg 23.09 27.97 93.36 

image_10646.jpg 3.76 9.50 34.08 

image_10740.jpg 9.21 35.91 50.26 

image_10831.jpg 5.64 4.86 34.48 

image_10922.jpg 4.72 6.33 66.4 

image_11013.jpg 26.86 15.80 47.54 

image_11104.jpg 8.35 18.15 27.63 

image_11196.jpg 16.62 7.86 32.34 

image_11288.jpg 12.78 6.95 53.74 

image_11379.jpg 27.96 30.72 167.11 

image_11650.jpg 1.69 1.54 25.62 

image_11740.jpg 4.59 5.26 16.58 

image_11830.jpg 0.02 0.25 52.46 

image_11938.jpg 17.59 16.40 104.81 

image_12027.jpg 12.16 8.63 12.29 

image_12127.jpg 15.13 22.95 159.56 

image_12220.jpg 2.26 0.74 50.1 

image_12310.jpg 14.65 37.11 31.85 

image_12400.jpg 3.56 0.82 47.99 

8.3.4 Native heap memory 

File Name CCVT -  

Tesseract 3.05 

StanDL -  

Tesseract 4.1.1 

SpecDL - EAST 

+ Tesseract 4.1.1 

image_00000.jpg 97 112 1023 

image_00079.jpg 73 88 1141 

image_00258.jpg 77 91 566 
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image_00377.jpg 74 90 275 

image_00414.jpg 77 90 296 

image_00478.jpg 75 90 499 

image_00515.jpg 86 100 491 

image_00689.jpg 100 112 978 

image_00698.jpg 88 99 531 

image_00771.jpg 75 91 274 

image_01147.jpg 75 91 480 

image_01156.jpg 77 91 487 

image_01294.jpg 77 92 491 

image_01384.jpg 77 92 485 

image_01478.jpg 78 92 492 

image_01569.jpg 86 97 373 

image_01660.jpg 79 94 567 

image_01751.jpg 87 100 583 

image_01842.jpg 81 96 579 

image_01936.jpg 85 99 550 

image_02027.jpg 83 97 545 

image_02118.jpg 85 99 514 

image_02209.jpg 84 98 511 

image_02300.jpg 93 104 376 

image_02398.jpg 66 80 287 

image_02489.jpg 73 85 368 

image_02670.jpg 84 94 528 

image_02760.jpg 66 80 292 

image_02851.jpg 80 92 530 

image_02941.jpg 64 83 714 

image_03032.jpg 74 86 544 

image_03125.jpg 80 92 407 

image_03216.jpg 66 89 315 

image_03310.jpg 66 89 307 

image_03401.jpg 65 89 290 

image_03495.jpg 68 90 308 

image_03588.jpg 66 92 317 

image_03678.jpg 79 92 519 

image_03864.jpg 124 141 1922 

image_03957.jpg 66 82 306 
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image_04048.jpg 69 84 359 

image_04231.jpg 99 104 634 

image_04322.jpg 65 81 336 

image_04414.jpg 71 82 332 

image_04504.jpg 86 91 504 

image_04596.jpg 72 88 383 

image_04689.jpg 65 86 297 

image_04873.jpg 73 93 427 

image_04967.jpg 67 88 282 

image_05058.jpg 71 92 342 

image_05240.jpg 80 94 375 

image_05332.jpg 70 81 331 

image_05423.jpg 69 84 384 

image_05513.jpg 68 86 384 

image_05605.jpg 70 86 342 

image_05698.jpg 96 108 803 

image_05789.jpg 68 81 312 

image_05879.jpg 70 84 341 

image_05975.jpg 80 94 506 

image_06064.jpg 69 83 359 

image_06157.jpg 66 85 358 

image_06248.jpg 74 87 377 

image_06341.jpg 70 86 331 

image_06433.jpg 99 113 885 

image_06525.jpg 65 80 295 

image_06616.jpg 66 82 313 

image_06708.jpg 71 83 331 

image_06799.jpg 71 86 358 

image_07070.jpg 76 88 376 

image_07161.jpg 63 85 577 

image_07251.jpg 69 86 508 

image_07343.jpg 67 85 711 

image_07435.jpg 77 89 569 

image_07528.jpg 66 88 581 

image_07618.jpg 85 98 652 

image_07807.jpg 140 152 2050 

image_10087.jpg 74 85 386 
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image_10180.jpg 70 84 341 

image_10273.jpg 68 83 312 

image_10364.jpg 70 85 331 

image_10458.jpg 71 84 299 

image_10551.jpg 118 137 1728 

image_10646.jpg 70 85 414 

image_10740.jpg 78 89 426 

image_10831.jpg 74 88 382 

image_10922.jpg 79 91 424 

image_11013.jpg 83 97 523 

image_11104.jpg 74 92 344 

image_11196.jpg 80 95 406 

image_11288.jpg 88 101 745 

image_11379.jpg 121 124 1013 

image_11650.jpg 67 81 342 

image_11740.jpg 66 81 343 

image_11830.jpg 79 92 560 

image_11938.jpg 105 115 1063 

image_12027.jpg 76 93 345 

image_12127.jpg 126 129 1012 

image_12220.jpg 80 93 597 

image_12310.jpg 72 85 344 

image_12400.jpg 77 91 445 

 

8.3.5 Image size & number of bound boxes created by EAST 

Table 10- The file size of each image and the number of bound boxes created by EAST for each image. 

File Name Image size 

(MB) 

Width (px) Height (px) # of bound 

boxes created 

by EAST 

image_00000.jpg 8.33 2550 857 130 

image_00079.jpg 1.51 350 187 16 

image_00258.jpg 1.01 879 322 37 

image_00377.jpg 0.59 350 187 15 

image_00414.jpg 0.93 465 315 59 

image_00478.jpg 0.48 300 157 14 

image_00515.jpg 14.27 1392 513 52 

image_00689.jpg 1.91 2550 881 135 
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image_00698.jpg 2.02 1488 604 175 

image_00771.jpg 1.43 350 185 18 

image_01147.jpg 1.70 291 156 11 

image_01156.jpg 2.99 450 162 10 

image_01294.jpg 0.77 350 183 13 

image_01384.jpg 1.46 350 189 12 

image_01478.jpg 551 450 166 13 

image_01569.jpg 9.94 1004 372 90 

image_01660.jpg 0.17 350 155 10 

image_01751.jpg 0.27 1110 382 92 

image_01842.jpg 0.71 450 165 10 

image_01936.jpg 0.72 552 470 39 

image_02027.jpg 3.12 450 164 14 

image_02118.jpg 9.60 470 300 46 

image_02209.jpg 0.75 450 165 10 

image_02300.jpg 9.94 749 529 85 

image_02398.jpg 3.63 413 263 38 

image_02489.jpg 0.73 749 529 82 

image_02670.jpg 1.98 1414 576 164 

image_02760.jpg 0.24 499 245 30 

image_02851.jpg 0.25 1432 604 136 

image_02941.jpg 0.28 450 163 11 

image_03032.jpg 1.42 917 228 77 

image_03125.jpg 0.21 1157 471 82 

image_03216.jpg 1.61 642 293 65 

image_03310.jpg 0.28 563 305 49 

image_03401.jpg 0.99 413 263 38 

image_03495.jpg 0.28 563 305 42 

image_03588.jpg 0.53 668 292 25 

image_03678.jpg 0.28 1076 832 98 

image_03864.jpg 1.51 1700 2338 163 

image_03957.jpg 0.41 441 311 31 

image_04048.jpg 1.51 918 340 39 

image_04231.jpg 1.08 1352 972 246 

image_04322.jpg 3.11 768 291 109 

image_04414.jpg 0.47 768 294 118 

image_04504.jpg 3.30 738 1033 226 
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image_04596.jpg 0.28 910 384 107 

image_04689.jpg 0.78 413 263 41 

image_04873.jpg 2.08 1139 477 78 

image_04967.jpg 0.72 402 129 12 

image_05058.jpg 0.66 957 276 25 

image_05240.jpg 0.41 700 536 62 

image_05332.jpg 0.66 768 292 123 

image_05423.jpg 0.74 838 460 119 

image_05513.jpg 3.42 1120 343 102 

image_05605.jpg 0.25 383 703 46 

image_05698.jpg 15.16 973 1736 142 

image_05789.jpg 0.52 625 233 86 

image_05879.jpg 1.19 910 308 39 

image_05975.jpg 0.56 1359 582 126 

image_06064.jpg 5.01 931 361 92 

image_06157.jpg 0.85 1080 319 82 

image_06248.jpg 0.86 998 414 81 

image_06341.jpg 2.90 750 304 43 

image_06433.jpg 1.33 1463 1336 190 

image_06525.jpg 0.41 600 172 36 

image_06616.jpg 0.18 615 282 15 

image_06708.jpg 2.07 832 262 102 

image_06799.jpg 0.20 800 403 86 

image_07070.jpg 1.01 924 422 97 

image_07161.jpg 2.72 179 240 12 

image_07251.jpg 1.43 417 281 12 

image_07343.jpg 0.86 179 240 12 

image_07435.jpg 1.47 340 867 124 

image_07528.jpg 1.47 667 174 41 

image_07618.jpg 1.03 1370 898 193 

image_07807.jpg 6.44 3024 1392 194 

image_10087.jpg 0.56 916 431 97 

image_10180.jpg 1.07 934 285 79 

image_10273.jpg 3.02 464 336 19 

image_10364.jpg 1.28 917 267 39 

image_10458.jpg 1.31 575 218 21 

image_10551.jpg 1.58 2200 1700 114 
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image_10646.jpg 0.87 1153 434 81 

image_10740.jpg 7.46 626 846 196 

image_10831.jpg 0.39 993 379 105 

image_10922.jpg 0.66 1030 435 125 

image_11013.jpg 0.83 1064 737 125 

image_11104.jpg 1.23 323 622 85 

image_11196.jpg 8.57 973 394 92 

image_11288.jpg 3.43 723 1996 113 

image_11379.jpg 1.49 1872 1392 557 

image_11650.jpg 0.16 560 336 85 

image_11740.jpg 0.45 763 246 54 

image_11830.jpg 0.16 1337 611 124 

image_11938.jpg 1.12 2032 1238 209 

image_12027.jpg 0.44 745 266 15 

image_12127.jpg 4.69 1872 1392 533 

image_12220.jpg 0.25 1416 672 120 

image_12310.jpg 16.06 723 268 103 

image_12400.jpg 0.25 1192 436 158 

 


