
Independent project, 15 credits, for the
degree of Bachelor of Computer Science
Spring Semester 2020
Faculty of Natural Sciences

Java and Kotlin, a
performance comparison
Niclas Everlönn and Stylianos Gakis



Authors
Niclas Everlönn <niclas.everlonn@hotmail.com>
Stylianos Gakis <stelios.gakis@yahoo.com>

Title
Java and Kotlin, a performance comparison

Supervisor
Andreas Nilsson

Examiner
Daniel Einarson

Abstract
When it comes to developing software, it is important to keep in mind a variety of factors. It
is paramount that software is fast, responsive, optimized, and able to be stored and used by
the end consumer. This is especially true within fields such as medical care or critical systems
where the speed is critical to the end-user and where the memory and storage capacity may
all be a limiting factor to the software. This paper evaluates the differences in performance
between the Java programming language and the Kotlin programming language. This paper
evaluates this by comparing performance by experiment, comparing metrics between the two
and relevant literature review about the subject. The results show an overall better performance
of Java in most occasions, with Kotlin managing to perform better in much fewer benchmarks.
These differences are mostly not very significant, however there are exceptions where Kotlin
is performing considerably worse. That happens particularly when a lot of the Kotlin idiomatic
features are implemented, which add a big overhead and if performance is a big concern, they
should be used sparingly.

Keywords

Algorithm, Android, Benchmark, Java, Kotlin, Memory, Performance, Programming Language,

Speed.

i



Acknowledgements

I would like to express my gratitude to my parents andmy brother, for supporting

me in my pursuit of finishing my studies - S. G.

ii



Contents

1 Introduction 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Disposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Overview of Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Overview of Kotlin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Android OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Method 20
3.1 Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Benchmarks 28
4.1 Fannkuch-Redux benchmark . . . . . . . . . . . . . . . . . . . . . . 28

4.2 N-body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Fasta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Reverse Complement . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Java implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 Kotlin implementations . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Results 32
5.1 Fannkuch-Redux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 N-Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Fasta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



5.4 Reverse Complement . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusions and Discussion 42
6.1 Research Question one for Android Platform . . . . . . . . . . . . . 42

6.2 Research Question one for Desktop Platform . . . . . . . . . . . . . 42

6.3 Research Question one overall result . . . . . . . . . . . . . . . . . . 43

6.4 Research Question two . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Future Research 47
7.1 Future of Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 Future research ideas . . . . . . . . . . . . . . . . . . . . . . . . . . 48

References 49

iv



1 Introduction

This paper intends to explore the relationship between the Java programming

language and the Kotlin programming language concerning code execution speed

and memory footprint. It also aims to compare the relations between these

metrics between the Windows 10 operating system (OS) and the Android 9.0

version to see if the metrics may be platform dependent. This thesis will not cover

any other platforms or languages. The authors believe that the Java programming

language will have an advantage on desktop due to the extensive optimization

work that has been done to it. For the Android part, the authors expect the Kotlin

programming language to, at the very least, close the gap to the Java programming

language in the Android tests due to its greater usage within this platform.

1.1 Purpose

The goal of this thesis is to do a thorough comparison between the Java

programming language and Kotlin. Several factors could play a role in comparing

two programming languages, therefore the authors are limiting themselves by

making some decisions. This thesis will elaborate on themetrics that are expected

to be possible to be quantified, while also being important enough for developers

coming in the question of choosing between the two programming languages.

There is also a focus on the context of the Android platform, as currently, Kotlin

is being adopted by more Android developers [1], and is, therefore, a very highly

discussed topic amongst developers for that platform with more people wanting

to, or already adopting it [2]. This paper aims to conclude, about what trade-offs a

developer makes when choosing one language over the other and how important

are those trade-offs in the long run. This should be able to serve as a reference

for developers to use when trying to convince their colleagues or their supervisors

when choosing the programming language to use for their future projects.

There is an extensive part in the paper discussing differences between the

languages that are tied to the syntax or their features. These parts do not serve

the purpose of specifically answering the research questions. This is done to

introduce the reader to the differences of these languages, and bring some context

to the discussion. Extending the discussion helps provide a bigger picture to the

1



developer, which can, in turn, allow them tomake amore informed decision when

choosing one language over the other, even if the performance differences are

known.

1.2 Research questions

Our study examines the following research questions.

1.2.1 What are the differences between Java and Kotlin considering
performance in code execution speed and memory usage?

There will be bench-marking tests run in both languages. The performance tests

will be in terms of speed of execution and memory footprint while the code is

executing.

1.2.2 Will these tests perform consistently across theWindows OS and the
Android platform?

Since Kotlin is being adopted on Android, it is very interesting to do more

specific comparisons in the context of theAndroid platformalongwith the desktop

benchmarks. The same benchmarks will be run on both platforms.

1.3 Hypothesis

The authors believe that the Java programming language will have an advantage

on desktop due to the extensive optimization work that has been done to it. For

the Android part, the authors expect the Kotlin programming language to, at the

very least, close the gap to the Java programming language in the Android tests

due to its greater usage within this platform. These points are further backed up

with related works showing that languages that run on the Java Virtual Machine

(JVM) tend to be slower than Java running on the JVM. This should also be true

for Kotlin [3, 4].

2



1.3.1 Research question one

For this research question, there may be different results based on these two

arguments. For one, Kotlin is a newer language, it has the advantage of not being

held back by old code and problems with backward-compatibility holding in back

in innovating and advancing itself. Therefore, performance-wise it is expected to

be up to standards with modern languages and overall competitive in that aspect.

However, with Java being such an old language, it has had more time to mature

and optimize most aspects of it whenever possible. One thing that will play a huge

role in performance testing is the quality of the compile-time optimization. Java

is expected to have an advantage.

1.3.2 Research question two

On the Android platform, Kotlin is expected to be quite performant as it is the

main programming language that android developers use. With the change of

the Android platform as Kotlin-first, it is expected that Google when making that

decision has considered performance and has spent time optimizing it to ensure

that users would have a quality experience. Because of that, it is expected to be

more performant on the Android platform compared to Windows, however not

necessarily faster than Java.

1.4 Ethics

When working on a paper that has as the main focus making a comparison of any

nature, some criteria must be met to be ethically appropriate. Since this paper,

as discussed before could be used as a reference to make a decision on which

language will be used on a real project, it becomes even more important to fulfill

these criteria. It is possible to skew the results if the code is not written equally in

both programming languages. Therefore, the tests must be implemented in each

programming language with the same algorithmic complexity. The differences

among the languages are what is being tested and not the performance of the

algorithms themselves. On top of that, there must be no mistakes done purposely

to show fake results that would favor one or the other programming language. It

must be understood however that a mistake could accidentally happen, or due to

3



the lack of knowledge, something could be implemented in a sub-optimal way.

Despite that, there must be made a great effort to avoid such a problem.

Along with making sure that the tests are done in an even playing field, it is

also very important to make sure that the results will be reproducible by any

other developer interested in the same topic. That would assist those who are

interested in running the tests themselves as well to be able to do so with ease.

This will be done by making sure that the source code of the implementations for

each case shall be publicly available, along with the raw data of the results. The

tools, the environment, and the configurations of those tests will also be publicly

available giving more context as to how these tests would compare if done with

some changes done in all these factors. The results are bound to change as the

languages themselves evolve through their update cycles. That iswhy the language

versions used for those tests must also be publicly available.

This would also serve as a way to allow future researchers to perform the same

or similar tests, but with the new and updated versions of the two programming

languages, orwithmore powerful hardware thatwill be coming in the future.

1.5 Scope

To make sure that the scope of this research stays within a logical boundary,

and that the tests are consistent if run again, some decisions are made from the

beginning. This paper does not aim to compare performance differences across

different hardware orwith different versions and releases of the two programming

languages. That means that across all tests done, the hardware for the desktop

computer, along with the programming language versions will be consistent and

the same for all of the tests. The same shall be done when performing these tests

on a mobile smartphone, where one model will be chosen and all the tests will

be performed on the same device under the same circumstances. There could

potentially be some great findings if all the tests done here could be performed

on different devices, or even better on different releases of the two programming

languages. It could serve as a tool to see how they are evolving across their

releases, and what developers should expect for the future. This, however, is

something that is further discussed in the section 7.2.

4



As discussed earlier in section 1.5 as well, this paper is not interested in evaluating

the performance or the quality of the tests, the algorithms, or the benchmarks that

will be used to make these comparisons. What is important is that they are the

same across the two implementations.

1.6 Disposition

Chapter 2 explains the relevant background to get the reader accustomed to the

topic. Android and the two languages, Java andKotlin are introduced. The related

work done by other researchers is discussed, along with the benchmarks that will

be run.

Chapter 3 is about the methodology that was used to do the research. It also

includes information about the metrics that are compared for the benchmarks.

The benchmarks choices are explained, along with the environment that those

benchmarks are run in.

Chapter 4 discusses the benchmarks more deeply while showing more details

about how they were implemented in both languages.

Chapter 5 contains the results of the benchmarks.

Chapter 6 explains the results, and what they mean, by answering the research

questions, backing the claims with the data from the previous section. It also

includes a conclusion, and what is the verdict from this paper is.

Chapter 7 explores some ideas on what could be done in the future to explore

further everything that is discussed in this paper.

5



2 Background

In this section, the necessary background is discussed in order to allow the reader

to get accustomed to the topics in question. Initially, the two programming

languages are introduced, along with some history for each one of them. Their use

cases are explained throughout their history and how they have evolved through

those years. Especially Java with a very long and successful history counting tens

of years of existing. After that, there is a section about Android, explaining how

the code is compiled and run on the smartphones, along with how it is possible

for the source code to be both in Kotlin and in Java and still be understood by the

OS. Finally, related work is being presented that also has explored the same topic,

while discussing their findings and how they are relevant to our work.

2.1 Overview of Java

2.1.1 Language features

Java is a statically and strongly typed language. This is a very good feature,

ensuring that errors on the type system are caught during compilation time,

minimizing the number of crashes that can happen during runtime. Java is

however also known to be a very verbose language. Especially comparing to

Kotlin, it can be seen that the lines of code required to do the same amount of work

can be substantially more. There have been some efforts in the latest versions of

Java to reduce this verbosity, with features like type inference [5], however, these

features are not yet available on the Android platform that only supports features

up to Java version 8.

2.1.2 History

Java started out its development in the early 1990s, however, at this point, it

had not received its signature name yet. Originally developed by James Gosling,

the project started out as a project for interactive television. This language later

became known as Oak, but due to an already existing copyright, this was later

proposed to be changed to Java, the name allegedly coming from a coffee break.

It was not before 1995 that the first beta version was released, and early 1996 that

6



the first stable version, Java 1, was released.

Over the years, there have been many major versions of Java. Some modern

features that are still used to this day include inner classes, first released in 1997 in

Java 1.1 version. The release of 1.4 2002 introduced things like the assert keyword,

NON-Blocking I/O, IPv6 support, exception handling, and many other features.

Java 7, back in 2011, introduced the improvements to the NIO library, strings in

switch, resource management in, and many more in this major update. Every

version of Java always added something new, with the latest version being 14 at

the time of writing, introducing switch expressions [6–9].

2.1.3 Why Java?

There can be many reasons for why Java was chosen for Android back in 2003

when the android Project was launched. The fact that Java was a very well known

language, with multiple versions coming out before the release of Android 1.0

could have been one factor. With an already established andwell-known language

that also has no pointer arithmetic, making it easier to develop within. There

was also the fact of Java Micro Edition (Java ME) which was designed for mobile

phones and embedded systems, now supporting many other types of systems [10,

11].

2.2 Overview of Kotlin

According to Andrey Breslav, the lead language designer [12], ”Kotlin is a

pragmatic programming language for JVM and Android that combines OO

(Object Oriented) and functional features and is focused on interoperability,

safety, clarity and tooling support.” [13]. The key point here is the interoperability,

meaning that since it compiles down to Java 6 compatible bytecode, it can be used

in a program alongside with Java [14]. This makes the language very easy to get

into for developers, as with the full interoperability with Java, it becomes very

easy to get into the language by migrating small parts of the code into Kotlin to

get familiar with the language [15, 16].

Kotlin promises that it may be very easy to learn [17]. It also promotes a

more concise code that is easier to read and write [18]. It can also provide

7



several language features that help with production, for example, making the

programmers consciously take care of null pointer exceptions[19], or promoting

functional-style programming without side-effects which helps with avoiding

common bugs [20].

2.2.1 History

Kotlin started being in development sometime in late 2010 with the goal to be a

statically typed programming language for the JVM [21]. Since then, the language

has come a long way, until in 2016 it was finally released in version 1.0 [13]. It

was originally released under the Apache 2.0 Open-Source licence, and that still

holds, as all of the source code is publicly available on GitHub [22, 23]. Since

then, the language has made several improvements, with the language being on

version 1.3 as of 15th of March 2020 [24]. During these versions, some very

important and useful features have been added to the language [25–27]. Working

with multi-platform projects within Kotlin has been added, further discussed in

themulti-platformsection 2.2.2. Coroutines have been integratedwith the library,

providing a way to work asynchronously in an easier and more light-weight way

compared to normal threads. As Coroutines is a very important feature for the

Android Platform, this will be further discussed in 2.2.3. Kotlin multi-platform

serializationwas added aswell, allowing for reflection-less serialization thatworks

well with Kotlin features like not null parameters and parameters with default

values [28]. All these, along with further enhancements on the standard libraries

is how the language has improved so far, with more ideas in mind for the future

[29]. This part is further discussed in section 7.1.

2.2.2 Kotlin multi-platform

Kotlin multi-platform is an effort to allow the business logic of an application to

be shared across different platforms [30]. In the future, when this project has

reached a point that it is implemented more widely, the performance difference

of going Kotlin multi-platform would be a very interesting topic to examine and

compare with the current state of Kotlin for the JVM. It allows teams to save time

bynot having to re-write the same code for eachplatform,while also allowing them

to take advantage of the native features of each of the platforms. It currently is in

8



an experimental state, and it allows for code sharing across platforms like JVM,

Android, JavaScript, iOS, Linux, Windows, Mac, and even embedded systems like

STM32 [31].

For this to be achievable, Kotlin can actually compile to more than just bytecode

for the JVM. It can also compile down to native code, without running on a VM

(Virtual Machine) [32].

2.2.3 Why Kotlin?

In the year 2017, only a year after the Kotlin v1.0 release, Android was announced

to have first-class support for Kotlin [33], and later in 2019, Android was

announced to be Kotlin-first [34]. In this section, the thesis discusses what are

the features that Kotlin provides over the Java programming language and why

was this decision made in the first place.

• Null safety

One great benefit that Kotlin provides is that it handles null pointers on the type

system level. That means that Kotlin knows whether a variable could be null or

not. For example, when in Java there is a reference type variable, the software

developer does not know if it is null or not at any point in the program. Thatmeans

that if for any reason, that reference has now become null, the programwill simply

throw a NullPointerException and crash. For this to be prevented, the software

developer would have to include null checks for every time that that reference is

being used, because even if it is done at the beginning of a function, another thread

could potentially have altered it. This problem can almost entirely be avoided in

Kotlin, by the fact that a variable, when declared must be declared as nullable or

not. If it is declared as not nullable, it stays that way, and developers do know that

a null pointer exception will never be thrown when accessing it.

• Coroutines

Working asynchronously is something that software developers very often need

to do in the current state of programming. This is especially true in environments

where a user interface is required to be accessed. The main thread is responsible

for keeping the user interface updating at a stable and high rate per second, while

9



also managing the input given by the user. This, as can be expected is something

very relevant in the Android context, where almost everything is done through

user interaction with the user interface. This is where multi-threading solves

this problem, by splitting the work done for the user interface part with all the

network calls or all the more complicated business logic that has to be done on

the background of an application. Kotlin comes with a very convenient solution

for this problem, called Coroutines.

Conceptually, Coroutines are just like threads, but they are much more light-

weight than them. There is no better way to explain this to the reader than to

provide some code examples showcasing what it means to be more lightweight

while still being asynchronous. The example code has a simple purpose, run

100.000 threads/coroutines and have them do this specific job, wait for 1 full

second, then print a dot on the standard output stream.

Figure 2.1: Threads and Coroutines

If those two are run on the same machine, it becomes apparent that the example

with the Coroutines runs as expected, while the example with the threads fails to

create that many threads, as would be expected for a normal computer. Even if a

computer is powerful enough to manage and not crash with that many threads, it

can be noted that they are still muchmore complex to work with for the computer

as they can take up to 50 seconds to finish all the computations [35].

Coroutines comewithmany other features than simply being light-weight threads.

They are overall easy to work with and provide a lot of solutions to problems that

other multi-threading paradigms have like call-back hell [36]and more.

10



• Support for functional style programming

Kotlin has great language support for functional-style programming, with a

vast collection of functional programming-style operations available in the

kotlin.collections package [37]. This allows for short and concise manipulations

of lists and more, in a way that does not alter the initial variables, supporting

immutability. These transformations can also be used with sequences, allowing

for lazy evaluation which can be a great improvement whenmanipulating very big

lists [38].

It must be mentioned, that Java also has its implementation of functional-style

programming, using streams [39]. However, this is not something that developers

have access to when programming for the Android platform for all versions. More

specifically, streams are only allowed for applications targeting API level 24:

Android 7.0 (Nougat). This is, in fact, a big problem, as reducing the reach of

an application simply to use some language features is not something a company

would likely choose to use. In fact, according to the official statistics for Android

version distribution across all devices, 57.9% of them are on API level 24 or newer

[40]. This would practically reduce the market of an application by 42.1%. This

means, that for most developers, who do want to make the application that they

have built available for all Android users, this feature is not available to them.

In contrast, the Kotlin equivalent of these features is available for all Android

versions and is, therefore, an option that developers have without any trade-

off.

• Smaller language features

On top of these very important features, other more minor ones simply make the

lives of developers easier by providing solutions that one may often encounter

while using the Java programming language.

String interpolation by providing a more concise and readable version of Java’s

String.format(). Type inference, allows the developers to not explicitly write the

types when they can be inferred. A note on this point, Java also does have support

for type inference since Java 10, but that is not available when programming for

the Android platform, as it officially supports features up to Java 8 [5]. The smart

11



casting of objects in the appropriate type when it is inferred by the code, avoiding

unnecessary calls to ’instanceof’, a feature that Java is planning to implement as a

preview with their approach in the future with Java 14, called ”pattern matching

for instanceof operator” [41]. Two different equality check implementations, ’==’

for structural equality and ’===’ for referential equality. Default arguments in

methods, allowing for more concise code, by not having to overload methods

whenmultiple implementations of it have to be done depending on the parameters

passed. Named arguments when calling a method, allowing for easier reading of

the code when not knowing exactly what the receiving method expects, or even

replacing the need for builders in certain cases. The ability to add custom get and

set properties on parameters, while the default ones already exist allowing the

developers to avoid writing a lot of boilerplate code. Finally, the ability to extend

the functionality of classes without needing to inherit from them through the use

of extension functions. [42]

Two more features are the when expression, with a lot more functionality

compared to the Java switch statement, and Kotlin data classes that can turn tens

or hundreds of lines of boilerplate Java code to a single line of code. It must be

mentioned, however, that these two features are something that Java is planning

to or has already started experimenting with implementing them as well, with

switch expressions in Java 12 and Record classes in Java 14 [43, 44].

2.3 Android OS

2.3.1 Overview

Android is an OS created to target mobile devices like smartphones, tablets, and

other platforms like TVs (Google TV) [45], cars (Android Auto) [46], watches

(Android Wear) and even glasses (Google Glass). It was as of the second Quarter

of 2018 by far the leading OS in sales to end-users, with an impressive 88% of the

market share of smartphones [47].

The original developers of the OS was a company called Android Inc that was

founded in 2003 [48]. Android Inc was later acquired by Google in 2005 [49].

Google has since then been the main maintainer and developer of the OS as the

12



core development of it is not community-driven [50]. However the project is

open-sourced with the code name Android Open Source Project (AOSP) and if

one wishes, there are several guidelines that one must follow to contribute to this

project [51].

2.3.2 Architecture

Android is based on Linux Kernel. The core OS is mainly written in C and C++ as

the Linux Kernel requires it to be so, and the user interface has mainly been built

in Java. However, the OS also contains parts of the code written in XML, Python,

Go, Assembly, and more, totaling 36 languages[52, 53].

The Linux Kernel as shown in Figure 2.2 is used to provide the OS with

functionalities like low-level memory management and threading. It also allows

Android to take advantage of some key security features as discussed in section

2.3.3. Along with the security features, it also allows device manufacturers to

develop their drivers for the hardware with ease, as Linux is a well-known kernel

that they are likely to have worked with before [53].

The Hardware Abstraction Layer (HAL) is used to provide an interface to the

hardware of the smartphone and allow the higher-level Java API framework to

make use of the capabilities of the hardware [53]. It consists of multiple modules,

where each module is responsible for exposing the capabilities of a different part

of the hardware. These modules include parts of the smartphone like the camera

or Bluetooth.

Further up in the abstraction level, are the Native C/C++ Libraries and the

Android Runtime. The Android Runtime consists of the core libraries used by

Kotlin and Java, along with the Android Runtime now known as ART. This topic

is further discussed in section 2.3.4 The native libraries are required sincemany of

the system components on Android like ART and HAL are built from native code

and therefore require native libraries written in C and C++ to be run [53].

The Java API Framework is where all the functionalities available to the

developers of Android applications reside. These APIs are the building blocks

that are used to allow the apps to contact the underlying system and all of the

13



Figure 2.2: The Android Software Stack [53]

14



functionalities that the smartphone has. This is where the View System exists,

which is used to build the user interface that the consumers on the smartphone

itself actually see. The Activity manager, that manages the life-cycle of the

applications, along with managing the back-stack of the navigation as well. The

Resource Manager, providing the applications with non-code specific resources

such as layout files and localized string resources. The Notification manager,

responsible for allowing the applications to display alerts, custom to each specific

application on the status bar. And finally, the Content Providers, that enable

applications to access data from other applications, provided that the access to

do so has been provided. This content is usually information like the contacts

from the contact app, or the ability to share information of their own to other

applications [53].

Android smartphones come with some pre-installed applications that handle

some of the most basic use cases of a smartphone. This includes applications

responsible for handling SMS messaging, calendars, internet browsing, contacts,

and more. These applications are available for other applications to access and

use when needed to perform these actions [53].

2.3.3 Security

The Android platform, at the OS level, provides the security of the Linux

Kernel. Due to the widespread use of the Linux Kernel in millions of security-

sensitive environments, the system has been consistently studied, attacked, and

consequently patched and fixed by thousands of developers. This makes this

Kernel a trust-worthy choice in terms of security. [54]

The security is enforced by a technique called ”The Application Sandbox”. This

is the idea that every application that is running on the system is isolated from

the rest of the applications running on the system at the same time. This makes

sure that certain problems are avoided in the system, such as preventing access

to files that applications should not have access to, along with ensuring that

one application may not exhaust the memory or CPU resources used by another

application. [54]

Other features are also included in the OS, like the verified boot, which guarantees

15



the integrity of the device software. Thatmeans that all executed code comes from

trusted sources. Since Android 7.0, this feature has also ensured the integrity

further by forbidding the device from booting when the device may be corrupted

[55].

2.3.4 Android Runtime (ART)

Before talking about ART, it should be mentioned that for versions of Android

before 5.0, the Dalvik VirtualMachine (DVM)was used as a runtime environment

for Android. It has however now been deprecated and is no longer maintained in

favor of the more performant ART [56–58]

ART provides some features that make it more performant and efficient.

A major feature is the inclusion of Ahead Of Time (AOT) compilation, which

provides an expectation of increased app performance due to it compiling all the

code on the target device for immediate execution. This also allows the compiler to

perform certain optimizations since it has access to the entire source code before

it performs the compilation [59].

Another important feature is the improved Garbage Collection (GC) capabilities

that it provides. While using Dalvik, this was a limiting factor, heavily impacting

the OS’s performance. Dalvik’s GC mechanism required two pauses to perform

the task, resulting in dropped frames each time garbage collection ran [60].

ART, on the other hand, requires only one pause on the process of doing GC,

along with compacting GC to reduce background memory usage and improved

garbage collection ergonomics, making concurrent garbage collections more

timely [61].

On top of that, ART has improved diagnostic detail in exceptions and crash

reports. That means that the developers get a more detailed explanation when an

exception and therefore a crash happens in their application, assisting in easier

development. For example, when a NullPointerException happens, a full report

is provided, showing what the app was trying to do with this null pointer, the field

the app was trying to write to, or even the method that was trying to be accessed.

[61].

16



2.4 Benchmarking

Benchmarking is a process of evaluating a product using specific metrics to

quantify the differences between that and another product. [62] In the context of

this paper, benchmarking is the process of comparing the performance differences

across various metrics between similar code being run on the Java programming

language and Kotlin.

For this to be done, often certain standard benchmark test suites are used. To

do comparisons between different programming languages, however, there is

a well-known lack of benchmarks. For that reason, the Computer Language

Benchmarks Game (CLBG) [63] project was chosen to assist in this process, as

it is a popular tool, used before in the academia to evaluate performance across

different programming languages. [3, 64]

2.5 Related Work

By analyzing applications with their source code being public, Mateus et al. found

out that developers are indeed adopting more Kotlin code in their codebases, or

even completely writing their applications in Kotlin [65]. Not only that but for

the applications that are written with certain parts being in Kotlin, ”the amount

of Kotlin code increases over the evolution whereas the amount of Java code is

reduced”[65]. That means that once developers get into Kotlin, and migrate parts

of their code into Kotlin, they continue writing more Kotlin, while even migrating

some of the old Java code into Kotlin as well.

Thismeans that there is definitely a trend of developers writingmore of their code

in Kotlin, and the rate of change only seems to be increasing in favor of Kotlin

[66].

As far as the impact that using Kotlin has on the code itself, there has not been any

empirical studies done to support the claim that Kotlin is easier to work within

development [65]. The community, however, does support that certain features

of Kotlin give certain advantages that developers appreciate, as also shown by the

number of developers being happy with using the language [42, 67].

On the topic of performance, it must be noted that any research that has been

17



done in the past does not guarantee that the results are still true. It is natural for

programming languages to change rapidly, due to new features added, and more

importantly when the compiler gets optimized. Even more so for a language like

Kotlin, which is relatively newer than Java, and thus the developers do not need to

limit the rate of improvement as much due to potential problems with backward

compatibility with all the legacy code that exists. This means that any test that

is done, has value to be repeated at a later time, to test the current state of the

language, which is likely altered and improved. With that in mind, some findings

can be discussed from some papers done in the past, which can then be compared

with the findings of this paper.

According to the work done by Bruno et al. [65], during a review of thousands of

open-sourced projects, those who did include Kotlin, partially or fully, did have

on average better, in their terms, code quality. It is evident that the vast majority

of projects that introduce Kotlin, on average, have a bigger increase of Kotlin

code and a decrease of Java code. With this increased adoption of Kotlin, it is

observed that a set of standard coding smells that are spotted inside applications,

regarding both object-oriented principles and specifically the Android platform,

are decreasing, thus resulting in a better quality of code. More specifically, by

the metrics applied in that paper, when Kotlin is first introduced to a project, an

increase in quality is observed in over 60% of the studied applications.

In the paper done by Patrik S.[4], the focus was more on the performance

differencewhich ismore relevant for this paper’s goal. In this paper, the tests were

done in three ways. The implementations for each benchmark were done once for

Java, once for Kotlin by directly converting the Java code to Kotlin, and one using

the ”Kotlin idiomatic way” [68]. In some specific tests done, the difference is very

considerable. More specifically, in the Fannkuch-Redux benchmark, Java and

Kotlin-converted are almost the same, with Java being approximately 10% slower.

But in the Kotlin-idiomatic implementation, it can be observed that there is a

slower performance by a factor of around 40. This shows that in the case that the

implementation is almost identical, Kotlin is slower by a non-significant factor,

butwhen using theKotlin idiomatic way, the difference so big that itmust be taken

into consideration by developers choosing between the languages. This difference

18



is not something consistent across all the benchmarks, with some showing similar

performance or an inconsiderable difference. However, there is a consistent trend

of Java being faster across all benchmarks by varying degrees.

Regarding the memory consumption differences, the data coming from the paper

of Patrik S. [4] suggests that there are often significant differences in the three

different implementations, in Java, Kotlin-idiomatic, and Kotlin-converted. The

memory consumption difference for some of the benchmarks is not significant.

However, in some other benchmarks, memory consumption is several orders of

magnitude difference between the different implementations. More specifically,

while in the Fasta benchmark, it is observed that the memory consumption is

different only by approximate 2%, in the Fannkuch-Redux benchmark that is not

true. In the Java implementation, there is an allocation of 10 objects. In the

Kotlin-converted implementation 13 objects. And finally in the Kotlin-idiomatic

version 9557541 objects. That is an increase by a factor of 106 for the total number

of bytes allocated. By this extreme example it is understood that for some specific

implementations, the Kotlin-idiomatic approachmay not be optimal and can lead

to some very significant differences. This, however, does not seem to be bound

to the language itself, as with a proper implementation one can see a very small

difference with Java, but developers dealing with implementing some critical

sections of the program will have to consider which approach they take while

writing in Kotlin. Misuse of the language features can happen, as the results of

this example show.

In short, the work done previously on this topic show two key observations. First,

working with Kotlin can improve the quality of the code by varying factors, mostly

regarding code smells and overall experience of the developer working with it.

However, it also shows that Kotlin can have some very negative implications

on the performance of the code executed regarding the speed of execution and

memory usage. This must be taken into consideration in this paper as well, to

prove whether that is something that still stands or if Kotlin has managed to

improve since those papers were written in a meaningful manner that prevents

these problems.

19



3 Method

It is important to keep in mind to write the code for Kotlin both in a Java

idiomatic way and a Kotlin idiomatic way to reduce the complexity of writing

and maintaining the code. This could also result in less performant code, as

shown by Schwermer Patrik in this quote. ”However, although Kotlin in this

study showed to be less performant than Java, the Java implementations were

a result of a large community effort whereas the Kotlin implementations were

either auto-converted or developed as part of this study. Furthermore, Kotlin

introduces several appreciated benefits over Java, including modern constructs

and features and improved null-safety. Therefore, it might be worth using Kotlin

as themain language of development, and either refrain from idiomatic constructs

in performance-critical sections or make use of the interoperability with Java to

combine the best of the two languages.” [4]

There is also the idea that writing maintainable code may be worth the cost of

slower performance. If the difference ismarginal, the improvedmaintainability of

the code can save development time, resulting in developers having more time to

optimize other parts of the code. This further assists with future maintainers not

having to take too much time understanding or expanding on the already written

code.

3.1 Research methodology

For the implementation of this research, the authors were inspired by the

approach known as systematic mapping process, as described by Petersen, Kai

et al. in Systematic Mapping Studies in Software Engineering [69].

The purpose of it is to go through amethod of five steps, fromdefining the research

question to reaching the end result of creating a systematic map.

The goal of this paper may not align exactly within the same goal as the

aforementioned paper, as the goal of it is to used to apply the research questions

to discover research trends, while normal systematic reviews have a more specific

goal in mind, like evaluating whether an intervention is practically useful by

industry [70]. Despite this, parts of the process are highly relevant to this research

20



paper, including the act of screening papers to decide if they are relevant to the

research and to sort out those that are not. This has assisted the authors of this

paper in the process of conducting the necessary research.

3.1.1 Sources of information

In order to gather the relevant information and gain a broad perspective for

the topic, the Kitchenham’s guidelines were followed [71]. The tools used for

researching were:

• Google scholar [72].

• The library of Kristianstad University [73].

Which library includes various prestigious databases like

• Science Direct [74]

• The ACM Digital Library [75]

• Springer Link [76]

3.1.2 Search criteria

To determine what kind of research had been done on this topic, the research

was focused on the core subjects concerning the research questions stated in this

paper.

The researched included keywords such as ’benchmark’, ’speed’, ’comparison’,

’evaluation’, along with the combination of terms directly relating to both the

languages and their relations to each other and their platform. This, however,

yielded few results. As the search queries became broader, the results did not

improve. As such, the decision became to making a simpler search, which is

covered later in section 3.1.3.

The research started by focusing on a few selections of thesis papers that may be

relevant to this paper, as these papers were of high interest. The next step was to

investigate the sources of said papers. This process was found to be successful,

and as such, it was repeated upon the sources. The information was then sorted

21



by relevance and organized, making up the bulk of information sources for this

paper.

3.1.3 Study selection and extraction

The lack of substantial studies within the subject was unexpected to the authors

of this thesis. It is unclear if the reason behind this is due to the limited scope

of database sources available to the authors or the lack of experience in research.

After consultation by experienced personnel within research, it was discovered

that a lack of relevant topics within Kotlin was the cause of this issue. Using

a simple search strategy of including both Kotlin and Android, with the search

criteria spanning the entirety of the research papers. The result of this search

yielded approximately twenty results, which, very few, if any, were relevant for

this research.

This was not entirely unexpected as the search terms were very focused, and did

not cover everything that was of interest. Most of these papers had very little to

do with the performance of the languages on the Android platform.

It became clear that, with the limited access to databases available, the material

in which could either inspire or be referenced in research could prove to be

limiting.

3.1.4 Implications of the research results

It would be hard to compare the research results to similar publications and

the inspiration of the approach to the research. It would also be difficult to

determine the standard metrics used within the scientific forum of these studies

that researches have concluded to use. There could also be issues with working

on ideas for the ”Future Work” section of this paper, as there could simply not be

enough information available, that the authors had access to at this time.

Right now, the choice may be done by considering other factors. This may be that

Kotlinmay be addressing some of the issues that Java programmersmay face, due

to some features that Java may not offer [77], or due to the preferred coding style

and the implied less verbosity of Kotlin as a language, meaning that there may be

22



fewer lines of code in Kotlin source code compared to Java source code on average

[78].

This paper can serve as a tool for developers to also consider other metrics, like

the speed of execution and memory profiling when making this decision. If there

is a big difference in some cases, some developers might opt to go with the better

language for their use case, despite what they believe in all the other factors. In

contrast, if it seems like there is not much of a difference between them, and

making a choice would not affect performance to a considerable amount, they can

then feel comfortable deciding on the language of choice by other, human factors.

The decision could come from simply what the developers actually prefer to work

on, and it seems like in that case Kotlin would have the edge with 72.6% of people

working with it liking the language compared to 53.4% for Java [67].

3.2 Environment Setup

As discussed in section 1.4 as well, it is important that for the tests done, all the

other variables have to be set in stone. This will make the tests more credible, as

there will be no external factors affecting the results. These external factors are

the following.

For benchmarks done on the desktop:

The benchmark computer that is running these benchmarks has the following

specifications:

• CPU: Quad-Core i5-4460S @ 2.90GHz

• Motherboard: ASUS H81M-E

• GPU: Radeon RX 560 - 4GB Vram

• Ram: 16GB DDR3 1333 MHz

• Storage: 512Gb SATA SSD

• OS Version: 10.0.18363 Build 18363

For the software:

• IntelliJ IDEA 2019.2.1

23



• Kotlin version 1.3.71

• Java version 8

For benchmarks done on the android platform:

The android smartphone that is running these benchmarks has the following

specifications

• Model: Redmi Note 8 Pro

• Android OS Version: Android 9, MIUI 11.0.3.0

• CPU: Octa-core (2x2.05 GHz Cortex-A76 & 6x2.0 GHz Cortex-A55)

• Ram: 6GB

• GPU: Mali-G76 MC4

• Storage: 128GB

As discussed in section 1.5 as well, this is one of the limitations in the paper. It

would be interesting to delve deeper into how these languages perform in different

environments, with different software versions and even different hardware.

However, this is something that this paper does not delve into. This is further

discussed in the section 7.2

The programming language version and Java Development Kit (JDK) version

were decided at the start of the thesis, taking the latest stable release of both

versions supported by the Android platform, to ensure a fair comparison between

the two. This is also to ensure consistency and the relevancy of the paper, as older

versions may suffer from performance issues that later versions have resolved.

It should be noted that it is not the performance of different devices that were

of interest to this research, but rather the performance of the programming

languages themselves. As such, there will be one desktop where all tests will be

performed on. For the Android part, a single smartphone was selected, as can be

seen above. These decisions were made to ensure consistency across tests and to

allow them to be repeatable by others as well. This makes sure that the results are

reliable and trustworthy.

24



3.3 Metrics

Themetrics compared in this paper stated in 1.2 will be the execution speed of the

code, measured from start to finish over a larger set of data runs. This is to ensure

that any anomaly found within testing will be eliminated. The speed is especially

relevant due to the complexity that many full projects take on, as minor speed

gains may result in a better overall complexity. The amount of space that the test

programs use will also be measured.

This may also be of especial relevance to the Android, as the popularity of your

application may be directly linked to the size of it, due to users may having to

clear up space due to the limited memory space within smartphones, something

that may be less prevalent on desktops. Memory usage will also be measured, as

Java can be run onmany low-memory devices. If there were to be a paradigm shift

towards using Kotlin in these smaller memory devices, the memory footprint may

be a very important metric in this matter.

3.4 Benchmarks

Applying and comparing all the benchmarks from CLBG is outside of this paper’s

scope, therefore a subset of them will be used. Due to this fact, there has to be

a selection done on which benchmarks will be chosen. The chosen benchmarks

will need to cover different concepts, ensuring that as many factors as possible

are being tested even with a limited test suite. For this, the classification of each

test done by Wing Li et al. [3] was used. The classification of the benchmarks

was done to show which ones were mainly manipulating integers, floating-point

numbers, pointers, or strings. The results of this classification are shown in Table

3.1.

25



Table 3.1: Classification for CLBG benchmarks

Benchmark Integer Floating Point Pointer String

Binary-Trees – – Yes –

Fannkuch-Redux Yes – – –

Fasta – – Yes –

K-Nucleotide – – Yes Yes

Mandelbrot – Yes – –

Meteor-Contest Yes – – –

N-body – Yes – –

Regex-DNA – – – Yes

Reverse-Complement – – – Yes

Spectral-Norm – Yes – –

One benchmark for each section had to be chosen. For integer manipulations

the Fannkuch-Redux was chosen. For floating-point manipulations, the N-

Body was chosen. For pointer manipulation, the Fasta was chosen. For

string manipulations, the Reverse-Complement was chosen. The way that the

benchmark was chosen for each category was by assessing if it would be possible

to have an easy and understandable translation from the original Java code to

the Kotlin code. Some benchmarks implementations were simply much more

complicated than others, which meant that there was a higher chance that when

translating the code into Kotlin, some mistake could happen that could alter the

way the code worked which would, in turn, make the comparison unfair. Those

four benchmarks had implementations that were translated into Kotlin by the

authors with a high enough confidence that there were no such problems after

the translation.

The CLBG contains solutions for the algorithms contributed by other developers

which are open-sourced and available in their GitHub repository or other open-

sourced GitHub repositories. [79] These implementations were used for this

26



paper.

In many cases, there have been some changes to the code, or complete re-

implementations of the benchmarks. This is mentioned on a per-benchmark

basis in the appropriate section. It must be noted that the approach that was

taken in the code was not to create the most performant solution. In many

cases, code clarity was preferred instead. The code in this way has the potential

to better reflect how the program would be written in a real project. Code

clarity is valued high compared to writing hard to read code that is optimized for

performance by sacrificing readability through the use ofmethods, better naming,

and other similar concepts. This also helps with keeping the implementations in

both languages fair and equal. It must be remembered that the point of these

benchmarks is not to see the absolute fastest way a language can perform a task,

but it is to compare the performance differences of the languages, performing the

same task using the same algorithm and approach. This distinction is important,

and the code written for each case is purposefully written in a way that this would

hold.

27



4 Benchmarks

All code implementations for this section in both Java programming language and

Kotlin are present in the appendix A

4.1 Fannkuch-Redux benchmark

Thedescription of this benchmarkwas taken from theCLBGwebsite [80]. To keep

the implementation similar between the languages, the same implementation

approach was taken for both languages, while using the most idiomatic way of

implementing it in each language.

This benchmark is implemented in the following way. A sequence of 1,...,n is

initially taken. In the benchmark done for this paper, a value of n = 8 was chosen.

All possible permutations of the same length are created for this sequence. Then

for each of those permutations, the following steps are applied. The first element

is read, and depending on the number that exists there, the order of the first x

numbers is reversed, where x was the value of that first number. This is repeated

until the first number becomes 1. When that condition ismet, the number of times

this step was repeated is saved. A checksum is also kept to ensure the correct

implementation of the algorithm. In the end, the maximum amount of flips that

was needed for all permutations is saved along with the checksum.

This benchmark aims to achieve testing integer manipulation as shown in table

3.1 since the algorithm contains a lot of flipping inside integer arrays.

4.2 N-body

The description of how this benchmark was implemented was taken from the

CLBG website [81]. The implementation is written in the Java programming

language, and the Kotlin code was written by manually translating the code while

making sure to use the standard Kotlin idioms.

This benchmark aims to achieve testing floating-point number manipulation as

shown in table 3.1, as the algorithm deals with a lot of floating-point number

calculations.

28



4.3 Fasta

The source code used for this benchmark is provided in the CLBG website

[82]. The original Java program was not altered in any meaningful way in

the way it operates, however, there were some changes to make the code more

understandable. This was to aid the proper translation to Kotlin, and ensuring

that the programs function the same way and are not different in any subtle

way.

As shown in table 3.1, pointer manipulation is the main point of this

benchmark.

4.4 Reverse Complement

The algorithm used for this benchmark is described in the CLBG website

[83].

4.5 Java implementations

The base of the implementations for most benchmarks was taken off of the

CLBG website[63]. That was done, to ensure that those implementations where

tried and tested on the test suites that are followed for the CLBG. The Java

implementations were mostly untouched, and in case they were, it is mentioned

on a per-benchmark basis.

4.5.1 Fannkuch-Redux

The algorithm for this program was quite straight-forward, therefore an

implementation was made from scratch following the algorithm as explained

in the benchmarks section 3.4. This was done to ensure that the code was

clear and understandable, thus easier to translate to Kotlin and ensure that it is

implemented with the same approach in both languages.

4.5.2 N-Body

The Java code for this program was taken directly from the CLBG website, as

that was the source of how to implement the algorithm, no pseudo-code or word

29



explanation was given. The Kotlin code was directly derived from that without

any meaningful changes.

4.5.3 Fasta

The algorithm from CLBG was used in this benchmark as well, without any

meaningful changes.

4.5.4 Reverse Complement

The reverse complement was also implemented by following one of the

submissions on the CLBG website as shown in the source code.

4.6 Kotlin implementations

The Kotlin implementations were inspired by the Java implementations, where

the code was manually translated from one language to the other. During this

process, an important detail was that the Kotlin idiomatic approaches of writing

codewere used, like using ranges for loops, using theKotlin collections extensions,

and more, as explained mostly in the official Kotlin documentation [68] and

other resources [84, 85]. This often means that the code was written in a style

that is aimed to be human-readable, with higher abstractions used, especially

from the collections extensions. This of course potentially comes with worse

performance, but this is a very important point that needs to be tested in this

paper. Another big difference is the tendency of Kotlin code to follow a more

functional programming approach, with variables being declared final, and with

new variables being created instead of mutating the existing ones where the

program allowed for such a change. This also potentially may have an effect on

speed and memory consumption, but as explained before, it is the idiomatic way

of writing Kotlin code, and the implications that come to a program with this

approach are very interesting to examine.

4.6.1 Fannkuch-Redux

Since this algorithm was implemented from scratch as discussed in the Java

section, it was simple to translate the code to Kotlin. The same approach was

30



used with Java, with the difference being that the standard library extensions

on integer arrays were used to perform some actions like reversing the array or

copying specific ranges of the array to another array.

4.6.2 N-Body

The translation of this code into Kotlin was done manually by looking at the Java

code and using unit tests to ensure that both implementations work in the same

way. No considerable changes were made on this occasion, aside from using an

extension function to extend the functionality of the data class, which was made

into a data class in the first place to support the standard way of dealing with such

classes in Kotlin.

4.6.3 Fasta

Compared to the Java code, the core functionality remains the same, with

manipulating all the pointers, but a lot of different Kotlin features were used in

various places. Mainly the iterations were handled using Kotlin functions like

repeat, standard extension functions like min on integers, and using constant

values instead of static final ones like in Java.

4.6.4 Reverse Complement

In this benchmark, there were not a lot of opportunities to use Kotlin specific

features as the program as mostly dealing with normal byte arrays. The

implementation stayed very much the same with the Java program, and this is

also reflected in the performance difference.

31



5 Results

For all the Android memory benchmarks, the code was run once, as between runs

the number of objects allocated was consistent as is expected from the same code

run. Theywere all run some timesmanually to ensure that this consistency is true,

which it always was, and this one value was picked as a result.

The desktop memory benchmarks were run differently. Since the same memory

tracing methods are not available outside of the Android platform, a different

way to collect the results was chosen. A benchmarking software named JProfiler

[86] was used instead. To configure it to produce similar results to the Android

results, several options were selected. The benchmarking started the moment

the benchmarking method was run, as it was set as the trigger to initiate the

benchmarking. JProfiler was configured to keep track of all objects created, both

live and garbage collected objects, which were created temporarily during one

of the iterations of the benchmark and were then discarded. Also, all types of

objects were recorded, both normal objects and arrays of objects. Despite all these

options. Along with that, the way that the results were presented was that the

memory consumed is shown inmegabytes (MB), therefore in the tables, the values

are translated to bytes.

For the speed benchmarks, the code was run 100 times. The first 20 of those runs

were discarded, as the first one or more iterations were the most volatile, as other

external factors were altering the time of execution. The final 80 iterations were

then saved, along with the average time of all of them, the fastest iteration, and

the slowest iteration. The speed results are shown in milliseconds, rounded up to

the second decimal position for all benchmarks unless specified otherwise. All of

these results are available in the appendix B.

The benchmark results from the Android and the Desktop will not be compared

with each other, the machines running the benchmarks are completely different,

therefore produce different results. What will be compared is the difference

between the languages on both platforms.

32



5.1 Fannkuch-Redux

5.1.1 Android Speed

Figure 5.1: Fannkuch-Redux Android speed results

For this benchmark, figure 5.1 is observed at an average speed of 47 ms for

Java and 62 ms for Kotlin. The difference is not too big but still meaningful,

with Kotlin being slower by approximately 30%. The source of this difference

is not directly apparent, although it most likely has to do with the use of some

abstractions provided by the collections extensions and other features like using

ranges to produce lists and then converting them to integer arrays or the use of

some immutable variables.

5.1.2 Desktop Speed

Figure 5.2 shows an average speed of 14.94 ms for Java and 15.22 ms for

Kotlin. The difference is quite insignificant in this case, with Java having a faster

execution time by approximately 2%. It could be concluded that the execution

speed in this specific benchmark is practically the same for both languages.

33



Figure 5.2: Fannkuch-Redux desktop speed results

5.1.3 Memory Android

Table 5.1: Fannkuch-Redux Android memory footprint

Language Number of Objects Memory required (Bytes)

Java 581128 23116712

Kotlin 581141 23117120

In table 5.1, the difference inmemory consumption is almost non existent. Neither

of the two languages performs better or worse in this aspect when performing this

benchmark.

5.1.4 Memory Desktop

Table 5.2: Fannkuch-Redux desktop memory footprint

Language Number of Objects Memory required (Bytes)

Java 581207 24998052

Kotlin 584505 29160899

34



Table 5.2 showcases a less than 1% difference in objects created, however, Kotlin

does require approximately 17% more memory to perform the same task on the

desktop application.

5.2 N-Body

5.2.1 Speed Android

Figure 5.3: N-Body Android speed results

Figure 5.3 shows an average execution time speed of 106 ms for Java and 338 ms

for Kotlin. That is a big difference, with Kotlin being on average 319% slower than

Java. There is no obvious culprit on what creates this substantial slow down, but

the performance hit is very obvious in this benchmark with floating-point number

manipulation.

5.2.2 Speed Desktop

The average speed of execution for Java is 70.31 ms, and for Kotlin it is 69.79 ms,

as shown in figure 5.4. The difference in this benchmark, at less than 1% in favor of

Kotlin is also insignificant enough to be considered that the two implementations

have the same performance.

35



Figure 5.4: N-Body desktop speed results

5.2.3 Memory Android

Table 5.3: N-Body Android memory footprint

Language Number of Objects Memory required (Bytes)

Java 8 384

Kotlin 3 64

In table 5.3 is shown that there is some difference in the memory consumption of

the benchmark. However, this benchmark is not one that is heavy on memory

consumption with the number of objects in both languages being under 10,

therefore the differences are not significant enough.

5.2.4 Memory Desktop

Table 5.4: N-Body desktop memory footprint

Language Number of Objects Memory required (Bytes)

Java 233 13736346

Kotlin 1401 46766490

36



When running on the desktop, with the benchmarking tools used, in table 5.4

is shown a big difference of 223 objects created for the Java program and 1401

objects created for the Kotlin program, a difference of 628%more objects created

for Kotlin. This difference then is shown in the memory consumed as well, with

Kotlin requiring 340% more memory than the Java implementation.

5.3 Fasta

5.3.1 Speed Android

Figure 5.5: Fasta Android speed results

Figure 5.5 Shows an average run-time speed of 27.53 ms for Java and 31.6 ms for

Kotlin. An approximately 15% slower performance by Kotlin. It can be noted that

Java performed within a range of 28.25 ± 5.9 ms while Kotlin in a range of 31.78

± 2.97 ms. This makes Kotlin more consistent across all 80 iterations.

5.3.2 Speed Desktop

Figure 5.6 Shows an average run-time speed of 12.10 ms for Java and 11.94 ms for

Kotlin. An approximately 1% slower performance by Java, therefore the difference

is once again considered meaningless and the performance is considered to be

37



Figure 5.6: Fasta desktop speed results

similar for both cases.

5.3.3 Memory Android

Table 5.5: Fasta Android memory footprint

Language Number of Objects Memory required (Bytes)

Java 2101 8623192

Kotlin 2101 8623192

The results for this benchmark, as shown in table 5.5 are completely identical in

regards to thememory used up by the two implementations. This shows that there

is no overhead in either of the languages for this exact case. Despite that fact,

however, Java still did manage to outperform Kotlin in this benchmark.

38



5.3.4 Memory Desktop

Table 5.6: Fasta desktop memory footprint

Language Number of Objects Memory required (Bytes)

Java 2127 10716447

Kotlin 2392 10716447

For the Fasta benchmark, as shown in table 5.6, Kotlin uses up approximately

12% more objects, however, both implementations require the same amount of

memory, therefore there does not seem to be any significant difference here.

5.4 Reverse Complement

5.4.1 Speed Android

Figure 5.7: Reverse-Complement Android speed results

Figure 5.7 shows an average run-time speed of 0.9791 ms for Java and 0.8256

ms for Kotlin. An approximate 19% better performance from Kotlin compared to

Java for the only benchmark on the Android platform. This, paired up with the

39



fact that both performed identically on the memory usage makes Kotlin better at

performing this particular task.

5.4.2 Speed Desktop

Figure 5.8: Reverse-Complement desktop speed results

Due to the smaller numbers in this benchmark, the number will be rounded up to

the third decimal position instead. Figure 5.8 shows an average run-time speed

of 0.102 ms for Java and 0.106 ms for Kotlin. A difference of 4% in favor of Java,

which is still considered small.

5.4.3 Memory Android

Table 5.7: Reverse complement Android memory footprint

Language Number of Objects Memory required (Bytes)

Java 3 106512

Kotlin 3 106512

The results for this benchmark, as shown in table 5.7 are also completely identical,

both in objects created and memory used.

40



5.4.4 Memory Android

Table 5.8: Reverse complement desktop memory footprint

Language Number of Objects Memory required (Bytes)

Java 28 13736346

Kotlin 261 14260634

Table 5.8 shows that Kotlin, just like in the desktop implementation of fasta

creates more objects, more precisely it created 261 objects, while the Java

implementation created 28 objects, an increase by 932%. However, Kotlin

requires just approximately 4% more memory, therefore not as significant as the

object count first indicates.

41



6 Conclusions and Discussion

6.1 Research Question one for Android Platform

The Android tests do suggest that in many cases the performance difference does

exist, however, isminimal, and thememory difference is often non-existent. More

specifically, the memory used by any of the benchmarks were never different

by any significant value, meaning they were different by less than 1% each time

except for the N-Body benchmark. That benchmark’s result is unique since it

had a big difference percentage-wise. However, the total amount of memory

needed was in total less than 400 bytes in both cases, which makes this difference

quite insignificant, as the memory required for this benchmark is very low

anyway.

Regarding the benchmarks of the speed of execution however, the differences are

more prominent. From the four benchmarks, there is one that Kotlin outperforms

Java by 19%, and then in the other 3, Java outperforms Kotlin by 15%, 30%, and

340%. The fact that Java is outperformed by Kotlin is one of the benchmarks,

shows that the result is not as simple as saying that one is better than the other.

Each case must be studied individually, and there are cases that Kotlin can

outperform Java. However, this must not take away from the fact that when

Java did outperform Kotlin, it did with a greater difference. The case of the N-

Body benchmark, where the difference was in the scale of 340%, shows that there

are cases where performance can vary by a lot more than what a developer may

initially think.

Overall, on the Android platform, the result is that for the memory used, there

seems to be no significant difference, while for the speed of execution Java has

overall the upper hand.

6.2 Research Question one for Desktop Platform

The results for the desktop implementations are quite different. For all

benchmarks, the speed of execution was very similar for both languages. The

differences ranged from 1% to 4% difference, two times in favor of Kotlin and

2 in favor of Java. Therefore here the verdict is that a developer would not

42



necessarily expect a difference in speed of execution when using one language or

the other.

For the memory benchmarks, however, the results are different. For two of

the benchmarks, the difference was insignificant, with less than 5% difference,

however for the other two there were bigger differences. The Fannkuch

benchmark required 17% more memory for the Kotlin implementation and the

N-Body benchmark required 340% more memory.

Therefore, for the desktop implementations, there are no differences observed in

regards to the speed of execution of the benchmarks between the two languages,

while there are some significant differences in the memory required to run said

benchmarks, with Java being more efficient in that.

6.3 Research Question one overall result

The initial hypothesis was that the languages will not have a very big difference

in performance, as Kotlin is expected to have caught up with Java in most cases

and have optimized how it runs on various occasions. The differences are in fact

usually not very substantial, however, a common trend of Kotlin always being out-

performed by Java is observed, even if that is not by a very big factor in the vast

majority of benchmarks.

With this inmind, a developermust always acknowledgewhat part of the program

they are coding for, and how critical it is for the absolute fastest execution of code

in that section. The argument of writing more time-critical code in Java when

the rest of the code base is in Kotlin could also be made, but that would have

to be considered on a per-case basis with careful testing that this change would

be worth it. The benchmarks do not provide an absolute guarantee that Java will

always be faster, andmore often than not it will be faster by ameaningful amount.

Therefore, the introduction of two languages into the code base and the necessary

context switch that the developerswill have to experienceworkingwith this part of

the code may not be worth this marginally improved performance. In case there

is such a need for a time-critical section in the code, it may be worth taking an

approach of writing Kotlin code without using any of the abstractions, andmaking

use of more classic Java-style programming in these sections.

43



6.4 Research Question two

Before discussing this section, a couple of facts must be taken into consideration.

As discussed in section 3.2, the machines running the benchmarks are not

identical. Therefore, it is expected that the desktop implementations will run

significantly faster than the same implementations for Android. On top of that,

it must be mentioned that the way of collecting the memory footprint of the

benchmarks in the Android implementations and in the desktop implementations

was different, due to limitations of the tools that were available to extract that

information. For Android, the framework provided with some native API that

assists with the collection of memory usage, while for the desktop, JProfiler,

an extra tool was used to make this data extraction. For these reasons, the

differences between the two can not be made by direct comparison, as that would

be meaningless and would only showcase the difference in power of the machines

executing the benchmarks, not in the languages themselves. The comparison is

done by seeing how different are the results between the two languages on the

Android implementations and then observing if the same differences are observed

in the desktop implementations.

With all that said, the verdict is that the results are not very consistent across the

two platforms. In fact, there seem to be a lot of significant differences in both

speeds of execution benchmarks, and memory usage benchmarks.

More specifically, while for the desktop the speed benchmarks are very similar in

both languages, for Android, Java has overall better performance. Even in the case

of the Reverse-Complement benchmark, where Kotlin had better performance,

the differencewasmore significant, at 19%better. In all desktop implementations,

the differences were always under 5%, meaning that the benchmarks were more

reliable. This indicates that potentially, for Android, there are more active steps

done in the way that the source code is translated into the machine code that

the mobile phone runs. This could be done with the hopes of optimizing the

performance and may be more or less successful with each language in different

cases.

On the other hand, the memory usage results are much more volatile on the

desktop implementations compared to the ones made for Android. The Android

44



results show a very small or non-existent difference in memory used. On the

desktop, those numbers are more varying, with the differences ranging from 0%

to 340%. The common result, however, is that Kotlin is always the language that

requires more memory, and in none of the 4 benchmarks was Java outperformed

by Kotlin in this aspect.

6.5 Discussion

The benchmarks run show some very promising results for Kotlin on the JVM.

Despite the fact that the support for it on the Android is quite recent, and the

language itself is not as old and has not had the same time to be optimized on the

JVM, it still manages to have a comparatively similar performance with Java in

most occasions. All this, while still managing to provide some interesting features

as discussed in section 2.2 that developers enjoy using. As shown in the results,

Kotlin does manage to perform consistently at a similar level to how Java does.

In the cases that it does not, sometimes the difference is big, and in such cases,

as discussed in section 6.3, the developer may want to approach this in a different

way, if performance is, in fact, an important factor in that section of the code.

6.5.1 Language choice discussion

Overall, since the differences are not very significant, most parts of the application

could be written in the language that the developers feel more comfortable with.

There is no need to worry about the potential performance differences in most

cases.

For a developer consulting this paper tomake an informeddecision about deciding

on the language to use for their application, a few things should be considered.

This paper does not examine the implications of this decision in the context of a

fully interactive application, that does not necessarily do any heavy computation

that resembles the benchmarks that were run in this paper. The authors believe

that the differences in this context would be inconsiderable, just like they were

mostly inconsiderable for the benchmarks run in the experiment.

With that being said, when there are time-critical sections, a more careful

approach should definitely be considered. However, in these cases, there is

45



no clear answer to know which language would be preferable. The best guess

would most often be Java, as it manages to more consistently outperform Kotlin,

but each case should be tested and put under a benchmark individually, in

order to make sure that the correct and more efficient decision is being made.

Taking in consideration this lack of meaningful performance difference between

the languages, if developers feel equally comfortable using both languages, if

performance is not a concern, Kotlin certainly has an advantage by providingmore

modern language features.

46



7 Future Research

7.1 Future of Languages

As time passes, as Kotlin is further adopted by the Android community or

potentially other fields like backend server code, there is a potential that more

focus will be put on the performance of it, which makes it a very good candidate

for future research.

Java, however, as shown by the new feature of patternmatching for the instanceof

operator in Java 14 [41] is planning to catch up to language features that Kotlin

has in the current version. With that in mind, if Kotlin does not introduce

anything new, developers may not have an incentive to use Kotlin anymore. This

is especially true if Java continues to be on average better than Kotlin in the speed

and memory usage factors. As the languages evolve, another similar paper could

be interesting to explore, initially to benchmark how the implementations differ

between the languages for the same features, but also to see how the languages

compare to each other with their latest versions at that point.

For the Android platform specifically, there is another factor that must be taken

into consideration. Currently, Android does not support the latest version of

Java, therefore, all the newer features that are introduced to the language are not

available to Android developers. If this continues to be true, and Android keeps

supporting only older versions of Java, all the new features that come to it will not

be usable by Android developers. In this case, Kotlin will always continue to have

an advantage over Java, and if the performance hit that comes with using Kotlin

is not significant enough, there will be little reason for any Android application

to be written in Java over Kotlin. In case this continues to be true, the research

will have to always make sure to be kept up to date, to ensure that Kotlin does

not introduce a lot of unnecessary overhead to Android applications, because

otherwise, developers may have to use Java, to ensure optimal efficiency while

missing out on a lot of language features.

47



7.2 Future research ideas

Due to the nature of the subject, the research shown in this paper may not

be conclusive of future versions of either of these languages, with new major

revisions being released multiple times per year. As such, it may be prevalent

to perform similar research in the future, as new significant changes are added to

the languages[27, 87].

A paper discussing some part of the language one year, may not hold any

value after the language has moved to the next release, where whatever was

discussed could have been changed, improved, or even completely removed from

the language itself. This also means, however, that this paper may prove to be

influential within research on the same, or similar topics to further the research

on this topic.

Another very interesting topic would be a more detailed examination of the

bytecode produced by the two languages, something that also changes, sometimes

drastically across different releases of the language themselves. This paper did

not do any comparison on the bytecode generated by the source code to see how

those differences that exist between the language are translated to what the JVM

runs. With such a paper, a much deeper understanding could be achieved and the

languages could be put under benchmarks on a much finer level of detail, along

with coming with solutions of how the languages can improve in the future.

Finally, developing a complete application in both languages featuring graphical

elements, as all modern applications do, would be a great tool to gauge the

performance differences between the languages in a more realistic environment,

rather than strictly a test of benchmarks in a controlled environment. Provided

that the application is implemented correctly in both languages and the correct

metrics are used, it could be an important topic to study.

48



References

[1] Fastest growing languages. URL: https://octoverse.github.com/#top-

languages (visited on 15/03/2020).

[2] State of Kotlin 2018. URL: https://www.kaggle.com/zanpusher/state-

of-kotlin-2018 (visited on 15/03/2020).

[3] Li, Wing, White, David and Singer, Jeremy. “JVM-hosted Languages: They

Talk the Talk, but Do They Walk the Walk?” In: Sept. 2013, pp. 101–112.

ISBN: 9781450321112. DOI: 10.1145/2500828.2500838.

[4] Schwermer, Patrik. “Performance Evaluation of Kotlin and Java on

Android Runtime”. MA thesis. Kth Royal Institute of Technology, 2018.

[5] Java Local Variable Type Inference. URL: https://docs.oracle.com/

en/java/javase/13/language/local-variable-type-inference.html

(visited on 29/03/2020).

[6] Kumar, Pankaj. History of Java. URL: https://www.journaldev.com/

33218/history-of-java (visited on 29/03/2020).

[7] Version 1.1 press release. URL: https : / / web . archive . org / web /

20080210044125 / http : / / www . sun . com / smi / Press / sunflash / 1997 -

02/sunflash.970219.0001.xml (visited on 29/03/2020).

[8] Version 1.4 press release. URL: https : / / web . archive . org / web /

20070815095726 / http : / / www . sun . com / smi / Press / sunflash / 2002 -

02/sunflash.20020206.5.xml (visited on 29/03/2020).

[9] JDK 7Release Notes. URL: https://www.oracle.com/technetwork/java/

javase/jdk7-relnotes-429209.html (visited on 29/03/2020).

[10] FAUguy. URL: https://www.phonearena.com/news/Googles-Android-

OS-Past-Present-and-Future_id21273 (visited on 29/03/2020).

[11] Java Platform, Micro Edition (JavaME. URL: https://www.oracle.com/

java/technologies/javameoverview.html (visited on 29/03/2020).

[12] Kotlin Foundation. URL: https://kotlinlang.org/foundation/kotlin-

foundation.html (visited on 14/03/2020).

49

https://octoverse.github.com/#top-languages
https://octoverse.github.com/#top-languages
https://www.kaggle.com/zanpusher/state-of-kotlin-2018
https://www.kaggle.com/zanpusher/state-of-kotlin-2018
https://doi.org/10.1145/2500828.2500838
https://docs.oracle.com/en/java/javase/13/language/local-variable-type-inference.html
https://docs.oracle.com/en/java/javase/13/language/local-variable-type-inference.html
https://www.journaldev.com/33218/history-of-java
https://www.journaldev.com/33218/history-of-java
https://web.archive.org/web/20080210044125/http://www.sun.com/smi/Press/sunflash/1997-02/sunflash.970219.0001.xml
https://web.archive.org/web/20080210044125/http://www.sun.com/smi/Press/sunflash/1997-02/sunflash.970219.0001.xml
https://web.archive.org/web/20080210044125/http://www.sun.com/smi/Press/sunflash/1997-02/sunflash.970219.0001.xml
https://web.archive.org/web/20070815095726/http://www.sun.com/smi/Press/sunflash/2002-02/sunflash.20020206.5.xml
https://web.archive.org/web/20070815095726/http://www.sun.com/smi/Press/sunflash/2002-02/sunflash.20020206.5.xml
https://web.archive.org/web/20070815095726/http://www.sun.com/smi/Press/sunflash/2002-02/sunflash.20020206.5.xml
https://www.oracle.com/technetwork/java/javase/jdk7-relnotes-429209.html
https://www.oracle.com/technetwork/java/javase/jdk7-relnotes-429209.html
https://www.phonearena.com/news/Googles-Android-OS-Past-Present-and-Future_id21273
https://www.phonearena.com/news/Googles-Android-OS-Past-Present-and-Future_id21273
https://www.oracle.com/java/technologies/javameoverview.html
https://www.oracle.com/java/technologies/javameoverview.html
https://kotlinlang.org/foundation/kotlin-foundation.html
https://kotlinlang.org/foundation/kotlin-foundation.html


[13] Kotlin 1.0 Released: Pragmatic Language for JVM and Android. URL:

https://blog.jetbrains.com/kotlin/2016/02/kotlin-1-0-released-

pragmatic-language-for-jvm-and-android (visited on 14/03/2020).

[14] Kotlin FAQ. URL: https://kotlinlang.org/docs/reference/faq.html#

what-does-kotlin-compile-down-to (visited on 14/03/2020).

[15] Calling Kotlin from Java. URL: https : / / kotlinlang . org / docs /

reference/java-to-kotlin-interop.html#calling-kotlin-from-java

(visited on 15/03/2020).

[16] Calling Java code from Kotlin. URL: https://kotlinlang.org/docs/

reference / java - interop . html # calling - java - code - from - kotlin

(visited on 15/03/2020).

[17] Further notes on Kotlin. URL: https : / / docs . corda . net / releases /

release-M9.2/further-notes-on-kotlin.html#further-notes-on-

kotlin (visited on 14/03/2020).

[18] Some of my favorite Kotlin features (that we use a lot in Basecamp).

URL: https://m.signalvnoise.com/some- of- my- favorite- kotlin-

features--that-we-use-a-lot-in-basecamp (visited on 14/03/2020).

[19] Flauzino, Matheus et al. “Are You Still Smelling It? A Comparative Study

between Java and Kotlin Language”. In: Proceedings of the VII Brazilian

Symposium on Software Components, Architectures, and Reuse. SBCARS

’18. Sao Carlos, Brazil: Association for Computing Machinery, 2018,

pp. 23–32. ISBN: 9781450365543. DOI: 10.1145/3267183.3267186. URL:

https://doi.org/10.1145/3267183.3267186.

[20] Hauer, Philipp. Clean Code with Kotlin. URL: https://phauer.com/2017/

clean-code-kotlin/#no-side-effects (visited on 14/03/2020).

[21] Jemerov, Dmitry. Hello World. URL: https : / / blog . jetbrains . com /

kotlin/2011/07/hello-world-2 (visited on 15/03/2020).

[22] GitHub. URL: https://github.com (visited on 15/03/2020).

[23] Jetbrains Kotlin. URL: https://github.com/JetBrains/kotlin (visited

on 15/03/2020).

50

https://blog.jetbrains.com/kotlin/2016/02/kotlin-1-0-released-pragmatic-language-for-jvm-and-android
https://blog.jetbrains.com/kotlin/2016/02/kotlin-1-0-released-pragmatic-language-for-jvm-and-android
https://kotlinlang.org/docs/reference/faq.html#what-does-kotlin-compile-down-to
https://kotlinlang.org/docs/reference/faq.html#what-does-kotlin-compile-down-to
https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html#calling-kotlin-from-java
https://kotlinlang.org/docs/reference/java-to-kotlin-interop.html#calling-kotlin-from-java
https://kotlinlang.org/docs/reference/java-interop.html#calling-java-code-from-kotlin
https://kotlinlang.org/docs/reference/java-interop.html#calling-java-code-from-kotlin
https://docs.corda.net/releases/release-M9.2/further-notes-on-kotlin.html#further-notes-on-kotlin
https://docs.corda.net/releases/release-M9.2/further-notes-on-kotlin.html#further-notes-on-kotlin
https://docs.corda.net/releases/release-M9.2/further-notes-on-kotlin.html#further-notes-on-kotlin
https://m.signalvnoise.com/some-of-my-favorite-kotlin-features--that-we-use-a-lot-in-basecamp
https://m.signalvnoise.com/some-of-my-favorite-kotlin-features--that-we-use-a-lot-in-basecamp
https://doi.org/10.1145/3267183.3267186
https://doi.org/10.1145/3267183.3267186
https://phauer.com/2017/clean-code-kotlin/#no-side-effects
https://phauer.com/2017/clean-code-kotlin/#no-side-effects
https://blog.jetbrains.com/kotlin/2011/07/hello-world-2
https://blog.jetbrains.com/kotlin/2011/07/hello-world-2
https://github.com
https://github.com/JetBrains/kotlin


[24] Semyonov, Pavel. Kotlin 1.3.70 Released. URL: https://blog.jetbrains.

com / kotlin / 2020 / 03 / kotlin - 1 - 3 - 70 - released/ (visited on

15/03/2020).

[25] What’s New in Kotlin 1.1. URL: https : / / kotlinlang . org / docs /

reference/whatsnew11.html (visited on 15/03/2020).

[26] What’s New in Kotlin 1.2. URL: https : / / kotlinlang . org / docs /

reference/whatsnew12.html (visited on 15/03/2020).

[27] What’s New in Kotlin 1.3. URL: https : / / kotlinlang . org / docs /

reference/whatsnew13.html (visited on 15/03/2020).

[28] Kotlin Serialization. URL: https : / / github . com / Kotlin / kotlinx .

serialization (visited on 15/03/2020).

[29] Isakova, Svetlana.What to Expect in Kotlin 1.4 and Beyond. URL: https:

//blog.jetbrains.com/kotlin/2019/12/what-to-expect-in-kotlin-

1-4-and-beyond/ (visited on 15/03/2020).

[30] Kotlin for cross-platform movile development. URL: https : / / www .

jetbrains.com/lp/mobilecrossplatform/ (visited on 15/03/2020).

[31] Kotlin Multiplatform Programming. URL: https : / / kotlinlang . org /

docs / reference / multiplatform . html # multiplatform - programming

(visited on 15/03/2020).

[32] Kotlin/Native Tech Preview: Kotlin without a VM. URL: https://blog.

jetbrains.com/kotlin/2017/04/kotlinnative-tech-preview-kotlin-

without-a-vm/ (visited on 15/03/2020).

[33] Isakova, Svetlana. Kotlin on Android. Now official. URL: https://blog.

jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/

(visited on 17/02/2020).

[34] Winer, David. Android’s commitment to Kotlin. URL: https://android-

developers . googleblog . com / 2019 / 12 / androids - commitment - to -

kotlin.html (visited on 17/02/2020).

[35] Such concurrency! Many threads! Wow! URL: https : / / medium . com /

@elizarov/such-concurrency-many-threads-wow-7c81ba9e9ebe (visited

on 16/03/2020).

51

https://blog.jetbrains.com/kotlin/2020/03/kotlin-1-3-70-released/
https://blog.jetbrains.com/kotlin/2020/03/kotlin-1-3-70-released/
https://kotlinlang.org/docs/reference/whatsnew11.html
https://kotlinlang.org/docs/reference/whatsnew11.html
https://kotlinlang.org/docs/reference/whatsnew12.html
https://kotlinlang.org/docs/reference/whatsnew12.html
https://kotlinlang.org/docs/reference/whatsnew13.html
https://kotlinlang.org/docs/reference/whatsnew13.html
https://github.com/Kotlin/kotlinx.serialization
https://github.com/Kotlin/kotlinx.serialization
https://blog.jetbrains.com/kotlin/2019/12/what-to-expect-in-kotlin-1-4-and-beyond/
https://blog.jetbrains.com/kotlin/2019/12/what-to-expect-in-kotlin-1-4-and-beyond/
https://blog.jetbrains.com/kotlin/2019/12/what-to-expect-in-kotlin-1-4-and-beyond/
https://www.jetbrains.com/lp/mobilecrossplatform/
https://www.jetbrains.com/lp/mobilecrossplatform/
https://kotlinlang.org/docs/reference/multiplatform.html#multiplatform-programming
https://kotlinlang.org/docs/reference/multiplatform.html#multiplatform-programming
https://blog.jetbrains.com/kotlin/2017/04/kotlinnative-tech-preview-kotlin-without-a-vm/
https://blog.jetbrains.com/kotlin/2017/04/kotlinnative-tech-preview-kotlin-without-a-vm/
https://blog.jetbrains.com/kotlin/2017/04/kotlinnative-tech-preview-kotlin-without-a-vm/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://android-developers.googleblog.com/2019/12/androids-commitment-to-kotlin.html
https://android-developers.googleblog.com/2019/12/androids-commitment-to-kotlin.html
https://android-developers.googleblog.com/2019/12/androids-commitment-to-kotlin.html
https://medium.com/@elizarov/such-concurrency-many-threads-wow-7c81ba9e9ebe
https://medium.com/@elizarov/such-concurrency-many-threads-wow-7c81ba9e9ebe


[36] Callback Hell. URL: http://callbackhell.com/ (visited on 16/03/2020).

[37] Package kotlin.collections. URL: https : / / kotlinlang . org / api /

latest / jvm / stdlib / kotlin . collections/ - abstract - collection /

#abstractcollection (visited on 28/03/2020).

[38] Kotlin Sequences. URL: https : / / kotlinlang . org / docs / reference /

sequences.html (visited on 29/03/2020).

[39] Package java.util.stream. URL: https : / / docs . oracle . com / javase /

8 / docs / api / java / util / stream / package - summary . html (visited on

29/03/2020).

[40] Distribution dashboard. URL: https://developer.android.com/about/

dashboards (visited on 28/03/2020).

[41] Pattern Matching for the instanceof Operator. URL: https : / / docs .

oracle . com / en / java / javase / 14 / language / pattern - matching -

instanceof-operator.html (visited on 01/05/2020).

[42] Why you should totally switch to Kotlin. URL: https : / / medium . com /

@magnus . chatt / why - you - should - totally - switch - to - kotlin -

c7bbde9e10d5 (visited on 15/03/2020).

[43] Java Language Updates - Switch Expressions. URL: https : / / docs .

oracle.com/en/java/javase/13/language/switch-expressions.html

(visited on 15/03/2020).

[44] Java documentation - Class Record. URL: https://download.java.net/

java/early_access/jdk14/docs/api/java.base/java/lang/Record.

html (visited on 15/03/2020).

[45] Android TV. URL: https://www.android.com/tv (visited on 14/03/2020).

[46] Android for Cars overview. 2019. URL: https://developer.android.

com/training/cars (visited on 14/03/2020).

[47] Globalmarket share held by the leading smartphone operating systems in

sales to end users from 1st quarter 2009 to 2nd quarter 2018. 2020. URL:

https://www.statista.com/statistics/266136/global-market-share-

held-by-smartphone-operating-systems (visited on 14/03/2020).

52

http://callbackhell.com/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-abstract-collection/#abstractcollection
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-abstract-collection/#abstractcollection
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-abstract-collection/#abstractcollection
https://kotlinlang.org/docs/reference/sequences.html
https://kotlinlang.org/docs/reference/sequences.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://developer.android.com/about/dashboards
https://developer.android.com/about/dashboards
https://docs.oracle.com/en/java/javase/14/language/pattern-matching-instanceof-operator.html
https://docs.oracle.com/en/java/javase/14/language/pattern-matching-instanceof-operator.html
https://docs.oracle.com/en/java/javase/14/language/pattern-matching-instanceof-operator.html
https://medium.com/@magnus.chatt/why-you-should-totally-switch-to-kotlin-c7bbde9e10d5
https://medium.com/@magnus.chatt/why-you-should-totally-switch-to-kotlin-c7bbde9e10d5
https://medium.com/@magnus.chatt/why-you-should-totally-switch-to-kotlin-c7bbde9e10d5
https://docs.oracle.com/en/java/javase/13/language/switch-expressions.html
https://docs.oracle.com/en/java/javase/13/language/switch-expressions.html
https://download.java.net/java/early_access/jdk14/docs/api/java.base/java/lang/Record.html
https://download.java.net/java/early_access/jdk14/docs/api/java.base/java/lang/Record.html
https://download.java.net/java/early_access/jdk14/docs/api/java.base/java/lang/Record.html
https://www.android.com/tv
https://developer.android.com/training/cars
https://developer.android.com/training/cars
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems


[48] The history of Android OS: its name, origin and more. 2019. URL: https:

/ / www . androidauthority . com / history - android - os - name - 789433

(visited on 13/03/2020).

[49] Google Buys Android for Its Mobile Arsenal. 2005. URL: https://web.

archive.org/web/20110205190729/http://www.businessweek.com/

technology/content/aug2005/tc20050817_0949_tc024.htm (visited on

14/03/2020).

[50] Is Android Really Open Source? And Does It Even Matter? 2016. URL:

https : / / www . makeuseof . com / tag / android - really - open - source -

matter (visited on 14/03/2020).

[51] AOSP Contributing. 2020. URL: https://source.android.com/setup/

contribute (visited on 14/03/2020).

[52] Android Languages Summary. URL: https : / / www . openhub . net / p /

android/analyses/latest/languages_summary (visited on 12/03/2020).

[53] Android PlatformArchitecture. 2019.URL: https://developer.android.

com/guide/platform (visited on 14/03/2020).

[54] Android System and kernel security. 2020. URL: https : / / source .

android . com / security / overview / kernel - security . html (visited on

14/03/2020).

[55] Verified Boot. 2020. URL: https : / / source . android . com / security /

verifiedboot (visited on 14/03/2020).

[56] ’ART’ experiment in Android KitKat improves battery life and speeds up

apps. 2013. URL: https://www.engadget.com/2013/11/06/new-android-

runtime-could-improve-battery-life (visited on 14/03/2020).

[57] Experimental Google ART runtime in Android KitKat can bring twice

faster app executions. 2013. URL: https://www.phonearena.com/news/

Experimental-Google-ART-runtime-in-Android-KitKat-can-bring-

twice-faster-app-executions_id49139 (visited on 14/03/2020).

[58] Debugging ART Garbage Collection. 2020. URL: https : / / source .

android . com / devices / tech / dalvik / gc - debug . html (visited on

14/03/2020).

53

https://www.androidauthority.com/history-android-os-name-789433
https://www.androidauthority.com/history-android-os-name-789433
https://web.archive.org/web/20110205190729/http://www.businessweek.com/technology/content/aug2005/tc20050817_0949_tc024.htm
https://web.archive.org/web/20110205190729/http://www.businessweek.com/technology/content/aug2005/tc20050817_0949_tc024.htm
https://web.archive.org/web/20110205190729/http://www.businessweek.com/technology/content/aug2005/tc20050817_0949_tc024.htm
https://www.makeuseof.com/tag/android-really-open-source-matter
https://www.makeuseof.com/tag/android-really-open-source-matter
https://source.android.com/setup/contribute
https://source.android.com/setup/contribute
https://www.openhub.net/p/android/analyses/latest/languages_summary
https://www.openhub.net/p/android/analyses/latest/languages_summary
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://source.android.com/security/overview/kernel-security.html
https://source.android.com/security/overview/kernel-security.html
https://source.android.com/security/verifiedboot
https://source.android.com/security/verifiedboot
https://www.engadget.com/2013/11/06/new-android-runtime-could-improve-battery-life
https://www.engadget.com/2013/11/06/new-android-runtime-could-improve-battery-life
https://www.phonearena.com/news/Experimental-Google-ART-runtime-in-Android-KitKat-can-bring-twice-faster-app-executions_id49139
https://www.phonearena.com/news/Experimental-Google-ART-runtime-in-Android-KitKat-can-bring-twice-faster-app-executions_id49139
https://www.phonearena.com/news/Experimental-Google-ART-runtime-in-Android-KitKat-can-bring-twice-faster-app-executions_id49139
https://source.android.com/devices/tech/dalvik/gc-debug.html
https://source.android.com/devices/tech/dalvik/gc-debug.html


[59] Dickman, Lawrence. “A COMPARISON OF INTERPRETED JAVA , WAT ,

AOT , JIT , AND DAC”. In: 2002.

[60] Frumusanu, LawrenceAndrei. A Closer Look at Android RunTime (ART)

in Android L. 2014. URL: https://www.anandtech.com/print/8231/

a- closer- look- at- android- runtime- art- in- android- l (visited on

14/03/2020).

[61] Android Runtime (ART) and Dalvik. 2020. URL: https : / / source .

android.com/devices/tech/dalvik (visited on 14/03/2020).

[62] Fernandes, Thiago Soares, Cota, Érika and Moreira, Álvaro Freitas.

“Performance Evaluation of Android Applications: A Case Study”. In:

Proceedings of the 2014 Brazilian Symposium on Computing Systems

Engineering. SBESC ’14. USA: IEEE Computer Society, 2014, pp. 79–84.

ISBN: 9781479985593. DOI: 10.1109/SBESC.2014.17. URL: https://

doi.org/10.1109/SBESC.2014.17.

[63] Gouy, Isaac. The Computer Language Benchmarks Game. URL: https:

//benchmarksgame-team.pages.debian.net/benchmarksgame/ (visited

on 20/04/2020).

[64] Sarimbekov, Aibek et al. “Workload characterization of JVM languages”.

In: Software: Practice and Experience 46.8 (2016), pp. 1053–1089. DOI:

10.1002/spe.2337. eprint: https://onlinelibrary.wiley.com/doi/pdf/

10.1002/spe.2337. URL: https://onlinelibrary.wiley.com/doi/abs/

10.1002/spe.2337.

[65] GóisMateus, Bruno andMartinez,Matias. “An empirical study onquality of

Android applications written in Kotlin language”. In: Empirical Software

Engineering (2019), pp. 3356–3393. DOI: 10.1007/s10664-019-09727-4.

[66] Android Kotlin, Android Java, trends. URL: https://trends.google.

com/trends/explore?date=today%205-y&geo=US&q=Android%20Kotlin,

Android%20Java (visited on 15/03/2020).

[67] Most Loved, Dreaded, andWanted Languages. URL: https://insights.

stackoverflow.com/survey/2019?utm_source=so-owned&utm_medium=

blog&utm_campaign=dev- survey- 2019&utm_content=launch- blog#

most-loved-dreaded-and-wanted (visited on 09/02/2020).

54

https://www.anandtech.com/print/8231/a-closer-look-at-android-runtime-art-in-android-l
https://www.anandtech.com/print/8231/a-closer-look-at-android-runtime-art-in-android-l
https://source.android.com/devices/tech/dalvik
https://source.android.com/devices/tech/dalvik
https://doi.org/10.1109/SBESC.2014.17
https://doi.org/10.1109/SBESC.2014.17
https://doi.org/10.1109/SBESC.2014.17
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://doi.org/10.1002/spe.2337
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2337
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2337
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2337
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2337
https://doi.org/10.1007/s10664-019-09727-4
https://trends.google.com/trends/explore?date=today%205-y&geo=US&q=Android%20Kotlin,Android%20Java
https://trends.google.com/trends/explore?date=today%205-y&geo=US&q=Android%20Kotlin,Android%20Java
https://trends.google.com/trends/explore?date=today%205-y&geo=US&q=Android%20Kotlin,Android%20Java
https://insights.stackoverflow.com/survey/2019?utm_source=so-owned&utm_medium=blog&utm_campaign=dev-survey-2019&utm_content=launch-blog#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2019?utm_source=so-owned&utm_medium=blog&utm_campaign=dev-survey-2019&utm_content=launch-blog#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2019?utm_source=so-owned&utm_medium=blog&utm_campaign=dev-survey-2019&utm_content=launch-blog#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2019?utm_source=so-owned&utm_medium=blog&utm_campaign=dev-survey-2019&utm_content=launch-blog#most-loved-dreaded-and-wanted


[68] Kotlin idioms. URL: https://kotlinlang.org/docs/reference/idioms.

html#idioms (visited on 29/03/2020).

[69] Petersen, Kai et al. “SystematicMapping Studies in Software Engineering”.

In: Proceedings of the 12th International Conference on Evaluation

and Assessment in Software Engineering. EASE’08. Italy: BCS Learning

Development Ltd., 2008, pp. 68–77.

[70] Petersen, Kai, Vakkalanka, Sairam and Kuzniarz, Ludwik. “Guidelines

for conducting systematic mapping studies in software engineering: An

update”. In: Information and Software Technology 64 (2015), pp. 1–18.

ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.infsof.2015.

03.007. URL: http://www.sciencedirect.com/science/article/pii/

S0950584915000646.

[71] Kitchenham, Barbara and Charters, Stuart. Guidelines for performing

Systematic Literature Reviews in Software Engineering. Tech. rep. EBSE

2007-001. Keele University and Durham University Joint Report, 2007.

URL: http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-

8.pdf.

[72] Acharya, Anurag. Google Scholar. 2004. URL: https://scholar.google.

com (visited on 08/02/2020).

[73] Pålsson, Hans. Biblioteket Högskolan Kristianstad. 2018. URL: https://

www.hkr.se/om-hkr/organisation/bibliotekochhogskolepedagogik/

bibliotek (visited on 05/02/2020).

[74] ACM Digital Library. URL: https : / / dl - acm - org . ezproxy . hkr . se

(visited on 05/02/2020).

[75] Science Direct. URL: https://www-sciencedirect-com.ezproxy.hkr.se

(visited on 05/02/2020).

[76] Springer Link. URL: https : / / link - springer - com . ezproxy . hkr . se

(visited on 05/02/2020).

[77] Comparison to Java Programming Language. URL: https : / /

kotlinlang.org/docs/reference/comparison- to- java.html (visited

on 09/03/2020).

55

https://kotlinlang.org/docs/reference/idioms.html#idioms
https://kotlinlang.org/docs/reference/idioms.html#idioms
https://doi.org/https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/https://doi.org/10.1016/j.infsof.2015.03.007
http://www.sciencedirect.com/science/article/pii/S0950584915000646
http://www.sciencedirect.com/science/article/pii/S0950584915000646
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
https://scholar.google.com
https://scholar.google.com
https://www.hkr.se/om-hkr/organisation/bibliotekochhogskolepedagogik/bibliotek
https://www.hkr.se/om-hkr/organisation/bibliotekochhogskolepedagogik/bibliotek
https://www.hkr.se/om-hkr/organisation/bibliotekochhogskolepedagogik/bibliotek
https://dl-acm-org.ezproxy.hkr.se
https://www-sciencedirect-com.ezproxy.hkr.se
https://link-springer-com.ezproxy.hkr.se
https://kotlinlang.org/docs/reference/comparison-to-java.html
https://kotlinlang.org/docs/reference/comparison-to-java.html


[78] Subham, Bose et al. “A COMPARATIVE STUDY: JAVA VS KOTLIN

PROGRAMMING IN ANDROID APPLICATION DEVELOPMENT”. In:

International Journal of Advanced Research in Computer Science 9 (June

2018), pp. 41–45. ISSN: 0976-5697. DOI: 10.26483/ijarcs.v9i3.5978.

URL: http://ijarcs.info/index.php/Ijarcs/article/view/5978/

4908.

[79] The Computer Language Benchmarks Game. URL: https://github.com/

nbraud/benchmarksgame/tree/master/bench (visited on 27/04/2020).

[80] Gouy, Isaac. The Computer Language Benchmarks Game: fannkuch-

redux description. URL: https://benchmarksgame-team.pages.debian.

net/benchmarksgame/description/fannkuchredux.html#fannkuchredux

(visited on 24/04/2020).

[81] Gouy, Isaac. The Computer Language Benchmarks Game: n-body

description. URL: https : / / benchmarksgame - team . pages . debian .

net / benchmarksgame / description / nbody . html # nbody (visited on

25/04/2020).

[82] Gouy, Isaac. The Computer Language Benchmarks

Game: fasta description. URL: https://benchmarksgame-team.pages.

debian.net/benchmarksgame/description/fasta.html#fasta (visited

on 25/04/2020).

[83] The Computer Language Benchmarks Game: reverse complement

description. URL: https : / / benchmarksgame - team . pages . debian .

net/benchmarksgame/description/revcomp.html#revcomp (visited on

27/04/2020).

[84] Hauer, Philipp. Kotlin idioms. URL: https : / / phauer . com / 2017 /

idiomatic-kotlin-best-practices/ (visited on 29/03/2020).

[85] Android Developers: Kotlin. URL: https : / / developer . android . com /

kotlin (visited on 29/03/2020).

[86] Java Profiler Overview. URL: https : / / www . ej - technologies . com /

products/jprofiler/overview.html (visited on 02/05/2020).

56

https://doi.org/10.26483/ijarcs.v9i3.5978
http://ijarcs.info/index.php/Ijarcs/article/view/5978/4908
http://ijarcs.info/index.php/Ijarcs/article/view/5978/4908
https://github.com/nbraud/benchmarksgame/tree/master/bench
https://github.com/nbraud/benchmarksgame/tree/master/bench
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/fannkuchredux.html#fannkuchredux
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/fannkuchredux.html#fannkuchredux
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/nbody.html#nbody
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/nbody.html#nbody
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/fasta.html#fasta
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/fasta.html#fasta
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/revcomp.html#revcomp
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/revcomp.html#revcomp
https://phauer.com/2017/idiomatic-kotlin-best-practices/
https://phauer.com/2017/idiomatic-kotlin-best-practices/
https://developer.android.com/kotlin
https://developer.android.com/kotlin
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html


[87] JDK 13 new Features. URL: https://openjdk.java.net/projects/jdk/

13/ (visited on 15/03/2020).

57

https://openjdk.java.net/projects/jdk/13/
https://openjdk.java.net/projects/jdk/13/


Appendices

58



Appendix - Contents

A Benchmark Implementations 60
A.1 Fannuch-Redux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.2 N-Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.3 Fasta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.4 Reverse Complement . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B Result Data 61
B.1 Fannuch-Redux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.2 N-Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.3 Fasta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.4 Reverse Complement . . . . . . . . . . . . . . . . . . . . . . . . . . 63

59



A Benchmark Implementations

A.1 Fannuch-Redux

A.1.1 Java implementation

Source code: https://github.com/StylianosGakis/hkr-thesis/blob/master/

BenchmarkApplication/app/src/main/java/se/stylianosgakis/

benchmarkapplication/benchmark/fannkuchredux/FannkuchReduxJava.

java

A.1.2 Kotlin implementation

Source code: https://github.com/StylianosGakis/hkr-thesis/blob/master/

BenchmarkApplication/app/src/main/java/se/stylianosgakis/

benchmarkapplication/benchmark/fannkuchredux/FannkuchReduxKotlin.

kt

A.2 N-Body

A.2.1 Java implementation

Source code: https://github.com/StylianosGakis/hkr-thesis/blob/master/

BenchmarkApplication/app/src/main/java/se/stylianosgakis/

benchmarkapplication/benchmark/nbody/NBodyJava.java

A.2.2 Kotlin implementation

Source code: https://github.com/StylianosGakis/hkr-thesis/blob/master/

BenchmarkApplication/app/src/main/java/se/stylianosgakis/

benchmarkapplication/benchmark/nbody/NBodyKotlin.kt

A.3 Fasta

A.3.1 Java implementation

Source code: https://github.com/StylianosGakis/hkr-thesis/blob/master/

BenchmarkApplication/app/src/main/java/se/stylianosgakis/

60

https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fannkuchredux/FannkuchReduxJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fannkuchredux/FannkuchReduxJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fannkuchredux/FannkuchReduxJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fannkuchredux/FannkuchReduxJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fannkuchredux/FannkuchReduxKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fannkuchredux/FannkuchReduxKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fannkuchredux/FannkuchReduxKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fannkuchredux/FannkuchReduxKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/nbody/NBodyJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/nbody/NBodyJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/nbody/NBodyJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/nbody/NBodyKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/nbody/NBodyKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/nbody/NBodyKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fasta/FastaJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fasta/FastaJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fasta/FastaJava.java


benchmarkapplication/benchmark/fasta/FastaJava.java

A.3.2 Kotlin implementation

Source code: https://github.com/StylianosGakis/hkr-thesis/blob/master/

BenchmarkApplication/app/src/main/java/se/stylianosgakis/

benchmarkapplication/benchmark/fasta/FastaKotlin.kt

A.4 Reverse Complement

A.4.1 Java implementation

Source code: https://github.com/StylianosGakis/hkr-thesis/blob/master/

BenchmarkApplication/app/src/main/java/se/stylianosgakis/

benchmarkapplication/benchmark/reversecomplement/

ReverseComplementJava.java

A.4.2 Kotlin implementation

Source code: https://github.com/StylianosGakis/hkr-thesis/blob/master/

BenchmarkApplication/app/src/main/java/se/stylianosgakis/

benchmarkapplication/benchmark/reversecomplement/

ReverseComplementKotlin.kt

B Result Data

B.1 Fannuch-Redux

B.1.1 Java implementation

Android results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Android/fannkuch/java

Desktop results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Desktop/fannkuch/java

61

https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fasta/FastaJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fasta/FastaKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fasta/FastaKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/fasta/FastaKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/reversecomplement/ReverseComplementJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/reversecomplement/ReverseComplementJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/reversecomplement/ReverseComplementJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/reversecomplement/ReverseComplementJava.java
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/reversecomplement/ReverseComplementKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/reversecomplement/ReverseComplementKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/reversecomplement/ReverseComplementKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/blob/master/BenchmarkApplication/app/src/main/java/se/stylianosgakis/benchmarkapplication/benchmark/reversecomplement/ReverseComplementKotlin.kt
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/fannkuch/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/fannkuch/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/fannkuch/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/fannkuch/java


B.1.2 Kotlin implementation

Android results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Android/fannkuch/kotlin

Desktop results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Desktop/fannkuch/kotlin

B.2 N-Body

B.2.1 Java implementation

Android results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Android/nbody/java

Desktop results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Desktop/nbody/java

B.2.2 Kotlin implementation

Android results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Android/nbody/kotlin

Desktop results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Desktop/nbody/kotlin

B.3 Fasta

B.3.1 Java implementation

Android results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Android/fasta/java

Desktop results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Desktop/fasta/java

B.3.2 Kotlin implementation

Android results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Android/fasta/kotlin

62

https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/fannkuch/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/fannkuch/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/fannkuch/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/fannkuch/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/nbody/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/nbody/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/nbody/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/nbody/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/nbody/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/nbody/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/nbody/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/nbody/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/fasta/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/fasta/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/fasta/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/fasta/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/fasta/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/fasta/kotlin


Desktop results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Desktop/fasta/kotlin

B.4 Reverse Complement

B.4.1 Java implementation

Android results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Android/reversecomplement/java

Desktop results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Desktop/reversecomplement/java

B.4.2 Kotlin implementation

Android results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Android/reversecomplement/kotlin

Desktop results at: https://github.com/StylianosGakis/hkr-thesis/tree/

master/Results/Desktop/reversecomplement/kotlin

63

https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/fasta/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/fasta/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/reversecomplement/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/reversecomplement/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/reversecomplement/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/reversecomplement/java
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/reversecomplement/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Android/reversecomplement/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/reversecomplement/kotlin
https://github.com/StylianosGakis/hkr-thesis/tree/master/Results/Desktop/reversecomplement/kotlin


www.hkr.se


	Introduction
	Purpose
	Research questions
	What are the differences between Java and Kotlin considering performance in code execution speed and memory usage?
	Will these tests perform consistently across the Windows OS and the Android platform?

	Hypothesis
	Research question one
	Research question two

	Ethics
	Scope
	Disposition

	Background
	Overview of Java
	Language features
	History
	Why Java?

	Overview of Kotlin
	History
	Kotlin multi-platform
	Why Kotlin?

	Android OS
	Overview
	Architecture
	Security
	Android Runtime (ART)

	Benchmarking
	Related Work

	Method
	Research methodology
	Sources of information
	Search criteria
	Study selection and extraction
	Implications of the research results

	Environment Setup
	Metrics
	Benchmarks

	Benchmarks
	Fannkuch-Redux benchmark
	N-body
	Fasta
	Reverse Complement
	Java implementations
	Fannkuch-Redux
	N-Body
	Fasta
	Reverse Complement

	Kotlin implementations
	Fannkuch-Redux
	N-Body
	Fasta
	Reverse Complement


	Results
	Fannkuch-Redux
	Android Speed
	Desktop Speed
	Memory Android
	Memory Desktop

	N-Body
	Speed Android
	Speed Desktop
	Memory Android
	Memory Desktop

	Fasta
	Speed Android
	Speed Desktop
	Memory Android
	Memory Desktop

	Reverse Complement
	Speed Android
	Speed Desktop
	Memory Android
	Memory Android


	Conclusions and Discussion
	Research Question one for Android Platform
	Research Question one for Desktop Platform
	Research Question one overall result
	Research Question two
	Discussion
	Language choice discussion


	Future Research
	Future of Languages
	Future research ideas

	References
	Benchmark Implementations
	Fannuch-Redux
	Java implementation
	Kotlin implementation

	N-Body
	Java implementation
	Kotlin implementation

	Fasta
	Java implementation
	Kotlin implementation

	Reverse Complement
	Java implementation
	Kotlin implementation


	Result Data
	Fannuch-Redux
	Java implementation
	Kotlin implementation

	N-Body
	Java implementation
	Kotlin implementation

	Fasta
	Java implementation
	Kotlin implementation

	Reverse Complement
	Java implementation
	Kotlin implementation



